Browsing by Author "Visser, Johan Christiaan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemThe recent recombinant evolution of a major crop pathogen, potato virus Y(PLOS, 2012-11-30) Visser, Johan Christiaan; Bellstedt, Dirk Uwe; Pirie, Michael DavidPotato virus Y (PVY) is a major agricultural disease that reduces crop yields worldwide. Different strains of PVY are associated with differing degrees of pathogenicity, of which the most common and economically important are known to be recombinant. We need to know the evolutionary origins of pathogens to prevent further escalations of diseases, but putatively reticulate genealogies are challenging to reconstruct with standard phylogenetic approaches. Currently available phylogenetic hypotheses for PVY are either limited to non-recombinant strains, represent only parts of the genome, and/or incorrectly assume a strictly bifurcating phylogenetic tree. Despite attempts to date potyviruses in general, no attempt has been made to date the origins of pathogenic PVY. We test whether diversification of the major strains of PVY and recombination between them occurred within the time frame of the domestication and modern cultivation of potatoes. In so doing, we demonstrate a novel extension of a phylogenetic approach for reconstructing reticulate evolutionary scenarios. We infer a well resolved phylogeny of 44 whole genome sequences of PVY viruses, representative of all known strains, using recombination detection and phylogenetic inference techniques. Using Bayesian molecular dating we show that the parental strains of PVY diverged around the time potatoes were first introduced to Europe, that recombination between them only occurred in the last century, and that the multiple recombination events that led to highly pathogenic PVYNTN occurred within the last 50 years. Disease causing agents are often transported across the globe by humans, with disastrous effects for us, our livestock and crops. Our analytical approach is particularly pertinent for the often small recombinant genomes involved (e.g. HIV/influenza A). In the case of PVY, increased transport of diseased material is likely to blame for uniting the parents of recombinant pathogenic strains: this process needs to be minimised to prevent further such occurrences.
- ItemA study of genomic variation in and the development of detection techniques for potato virus Y in South Africa(Stellenbosch : Stellenbosch University, 2008-03) Visser, Johan Christiaan; Bellstedt, D. U.; Stellenbosch University. Faculty of Science. Dept. of Biochemistry.ENGLISH ABSTRACT: Potato virus Y (PVY) is responsible for considerable yield losses in the South African potato industry. The incidence of this virus has greatly increased over the past few years. Even more worrying is the variation of symptoms observed during PVY infection and the recent appearance of the more virulent PVYNTN strain in local fields. This project aimed to investigate the possible genetic variation within the viral genome and to establish the origin of strains. The project also aimed to establish a dependable, area specific enzyme-linked immunosorbent assay (ELISA) to replace the currently used ELISAs. Currently seed potato certification is done using ELISA kits imported from Europe. These kits were developed for the detection of overseas variants of PVY and the use thereof in South Africa has in the past lead to false negatives. Finally, this project set out to develop, optimize and establish a sensitive and reliable real-time reverse transcriptase polymerase chain reaction (qRT-PCR) detection protocol for PVY. In the first part of the study the coat protein (CP) gene of PVY isolates from plant material obtained from various parts of South Africa was amplified using RT-PCR. The resulting cDNA was then sequenced directly or cloned into a vector and then sequenced. The resulting sequences were aligned in a data matrix with international reference sequences, analyzed and grouped according to strain. Examination of the CP gene within this matrix as well as phylogenetic analysis revealed six main groups of PVY. These six groups included the traditional PVYN and PVYO groups and a recombinant group. Furthermore it also revealed variants of PVYN and PVYO. These mutants and recombinants pose a threat as they may lead to South African strains of PVY expressing coat proteins which vary from those found overseas. This may render the currently used European ELISA method of detection less effective and subsequently result in an increase in viral prevalence. This reinforced the need for a detection method based on local viral strains. Phylogenetic and Simplot analysis also confirmed that a recombinant strain between PVYN and PVYO had evolved and that PVYNTN was such a recombinant. The second part of the study aimed to develop and establish detection methods based on local variants of PVY. This included the development of ELISA and qRT-PCR detection methods of PVY. Previously amplified cDNA of the PVY CP gene was cloned into an expression vector and successfully expressed. Antibodies produced against the recombinant protein, when used in ELISA, however, failed to achieve the required levels of sensitivity. This prompted the development of qRT-PCR detection methods for PVY. Primer combinations for PVY were designed using the previously established CP gene data matrix. A reliable and sensitive SYBR® Green I based qRT-PCR assay was developed for the detection of PVY. The assay effectively detected all known South African variants of PVY. Furthermore, a Taqman® assay was developed for the detection of all variants of PVY. The Taqman® assay was 10 fold less sensitive and does not allow for amplicon verification through melting curve analysis, but it does add more specificity due to the addition of the probe. Although these qRT-PCR detection methods are still too expensive to replace the routine diagnostics done with ELISA, they do offer the opportunity to screen valuable mother material and confirm borderline cases in seed certification.
- ItemA study of the strain evolution and recombination of South African isolates of Potato virus Y(Stellenbosch : Stellenbosch University, 2012-12) Visser, Johan Christiaan; Bellstedt, D. U.; Stellenbosch University. Faculty of Science. Dept. of Biochemistry.ENGLISH ABSTRACT: Potato virus Y (PVY) is responsible for considerable yield losses in the South African potato industry. The incidence of this virus has greatly increased over the past 20 years. In previous studies nonrecombinant strains of PVY, PVY N and PVY O, were detected in South African potatoes. In a recent study the occurrence of non-recombinant strains of PVY in South African potatoes was shown to have decreased while infection by more virulent recombinant strains, PVY NTN and PVY N-W, had increased dramatically. Infection of potato plants with PVY may cause stunted growth and mosaic or necrotic leaf symptoms which in turn can lead to a significant reduction in yield. Highly virulent recombinant PVY isolates as well as some of the non-recombinant strains may cause potato tuber necrotic ringspot disease (PTNRD) which may result in losses of 10% to total crop failure. For this reason investigation of infection by local recombinant isolates on local cultivars was important. To this end a representative number of isolates were selected for whole genome sequencing based on the relative occurrence of the various isolates in South Africa. A number of these sequenced isolates were subsequently used to infect local cultivars of potato in order to investigate the influence of genetic variation within the viral genome on symptom expression. In this study 27 South African isolates of PVY were sequenced through overlapping RT-PCR fragments. Seven of these isolates, six PVY NTN and one PVY N-W, were used to mechanically infect four local cultivars of potatoes under greenhouse conditions. The infected plants were monitored to establish the rate of systemic spread using a highly sensitive qRT-PCR and resulting tubers were visually screened for PTNRD. Highly variable recombinant isolates appear to be less virulent than the more conserved recombinant isolates possibly indicating molecular determinants for pathogenicity. For this reason the amino acid sequences of the South African isolates were compared to those of international isolates and scrutinized for variation and substitutions. Some South African isolates displayed amino acid substitutions unique to the specific isolate, making them unlike those found internationally. Substitution rates throughout the amino acid sequences differed greatly, with some isolates displaying hardly any changes whilst others varied a great deal from overseas isolates. Certain regions, many of which had specific functions, were more conserved than others. This study further investigated the recombination events within the PVY genome using reticulate phylogenetic analysis, molecular dating and network construction techniques. Unlike existing approaches, the one described in this study neither assumes an underlying strictly bifurcating species tree nor assumes prior knowledge of processes underlying deviations between individual gene trees. Through the use of the resulting robust time calibrated phylogeny, the patterns of diversification and recombination in PVY may be placed in the historical context of human cultivation of potatoes. Through the use of these techniques the study aimed to test whether diversification of the major strains of PVY and recombination between them occurred within the time frame of the domestication and modern cultivation of potatoes. From these analyses it can be deduced that recombinant strains of PVY were imported into South Africa.