Browsing by Author "Vila, Montserrat"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- ItemBiodiversity assessments : origin matters(Public Library of Science, 2018-11-13) Pauchard, Anibal; Meyerson, Laura A.; Bacher, Sven; Blackburn, Tim M.; Brundu, Giuseppe; Cadotte, Marc W.; Courchamp, Franck; Essl, Franz; Genovesi, Piero; Haider, Sylvia; Holmes, Nick D.; Hulme, Philip E.; Jeschke, Jonathan M.; Lockwood, Julie L.; Novoa, Ana; Nunez, Martin A.; Peltzer, Duane A.; Pysek, Petr; Richardson, David M.; Simberloff, Daniel; Smith, Kevin; Van Wilgen, Brian W.; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Zenni, Rafael D.Recent global efforts in biodiversity accounting, such as those undertaken through the Convention on Biological Diversity (CBD) and Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), are vital if we are to track conservation progress, ensure that we can address the challenges of global change, and develop powerful and scientifically sound indicators. Schlaepfer [1] proposes that we should work toward inventories of biodiversity that account for native and non-native species regardless of species origin and ecological context. We strongly disagree with the approach of combining counts of native and non-native species because this will reduce our capacity to detect the effects of non-native species on native biodiversity with potentially devastating consequences. Compelling and abundant evidence demonstrates that some non-native species can become invasive and produce major ecosystem disruptions and even native species extinction. Unfortunately, we still cannot be certain which non-native species will be the most detrimental (e.g., [2]). Combining native and non-native species together into a single biodiversity index would not only inflate biodiversity estimates and risk promoting the spread of invasive non-native species but would also ignore the fundamental ecological differences between the two groups.
- ItemDefining the impact of non-native species(Wiley, 2014) Jeschke, Jonathan M.; Bacher, Sven; Blackburn, Tim M.; Dick, Jaimie T. A.; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E.; Kühn, Ingolf; Mrugala, Agata; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vila, Montserrat; Winter, Marten; Kumschick, SabrinaENGLISH ABSTRACT: Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts.
- ItemFramework and guidelines for implementing the proposed IUCN Environmental Impact Classification for Alien Taxa (EICAT)(Wiley, 2015) Hawkins, Charlotte L.; Bacher, Sven; Essl, Franz; Hulme, Philip E.; Jeschke, Jonathan M.; Kuhn, Ingolf; Kumschick, Sabrina; Nentwig, Wolfgang; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Richardson, David M.; Vila, Montserrat; Wilson, John R. U.; Genovesi, Piero; Blackburn, Tim M.ENGLISH ABSTRACT: Recently, Blackburn et al. (2014) developed a simple, objective and transparent method for classifying alien taxa in terms of the magnitude of their detrimental environmental impacts in recipient areas. Here, we present a comprehensive framework and guidelines for implementing this method, which we term the Environmental Impact Classification for Alien Taxa, or EICAT. We detail criteria for applying the EICAT scheme in a consistent and comparable fashion, prescribe the supporting information that should be supplied along with classifications, and describe the process for implementing the method. This comment aims to draw the attention of interested parties to the framework and guidelines, and to present them in their entirety in a location where they are freely accessible to any potential users.
- ItemGlobal effects of non-native tree species on multiple ecosystem services(Wiley, 2019-04-19) Castro-Diez, Pilar; Vaz, Ana Sofia; Silva, Joaquim S.; Van Loo, Marcela; Alonso, Alvaro; Aponte, Cristina; Bayon, Alvaro; Bellingham, Peter J.; Chiuffo, Mariana C.; DiManno, Nicole; Julian, Kahua; Kandert, Susanne; La Porta, Nicola; Marchante, Helia; Maule, Hamish G.; Mayfield, Margaret M.; Metcalfe, Daniel; Monteverdi, M. Cristina; Nunez, Martin A.; Ostertag, Rebecca; Parker, Ingrid M.; Peltzer, Duane A.; Potgieter, Luke J.; Raymundo, Maia; Rayome, Donald; Reisman-Berman, Orna; Richardson, David M.; Roos, Ruben E.; Saldana, Asuncion; Shackleton, Ross T.; Torres, Agostina; Trudgen, Melinda; Urban, Josef; Vicente, Joana R.; Vila, Montserrat; Ylioja, Tiina; Zenni, Rafael D.; Godoy, OscarNon-native tree (NNT) species have been transported worldwide to create or enhance services that are fundamental for human well-being, such as timber provision, erosion control or ornamental value; yet NNTs can also produce undesired effects, such as fire proneness or pollen allergenicity. Despite the variety of effects that NNTs have on multiple ecosystem services, a global quantitative assessment of their costs and benefits is still lacking. Such information is critical for decision-making, management and sustainable exploitation of NNTs. We present here a global assessment of NNT effects on the three main categories of ecosystem services, including regulating (RES), provisioning (PES) and cultural services (CES), and on an ecosystem disservice (EDS), i.e. pollen allergenicity. By searching the scientific literature, country forestry reports, and social media, we compiled a global data set of 1683 case studies from over 125 NNT species, covering 44 countries, all continents but Antarctica, and seven biomes. Using differentmeta-analysis techniques, we found that, while NNTs increase most RES (e.g. climate regulation, soil erosion control, fertility and formation), they decrease PES (e.g. NNTs contribute less than native trees to global timber provision). Also, they have different effects on CES (e.g. increase aesthetic values but decrease scientific interest), and no effect on the EDS considered. NNT effects on each ecosystem (dis)service showed a strong context dependency, varying across NNT types, biomes and socio-economic conditions. For instance, some RES are increased more by NNTs able to fix atmospheric nitrogen, and when the ecosystem is located in low-latitude biomes; some CES are increased more by NNTs in less-wealthy countries or in countries with higher gross domestic products. The effects of NNTs on several ecosystem (dis)services exhibited some synergies (e.g. among soil fertility, soil formation and climate regulation or between aesthetic values and pollen allergenicity), but also trade-offs (e.g. between fire regulation and soil erosion control). Our analyses provide a quantitative understanding of the complex synergies, trade-offs and context dependencies involved for the effects of NNTs that is essential for attaining a sustained provision of ecosystem services.
- ItemMore than "100 worst" alien species in Europe(Springer, 2018-1217) Nentwig, Wolfgang; Bacher, Sven; Kumschick, Sabrina; Pysek, Petr; Vila, Montserrat‘‘One hundred worst’’ lists of alien species of the greatest concern proved useful for raising awareness of the risks and impacts of biological invasions amongst the general public, politicians and stakeholders. All lists so far have been based on expert opinion and primarily aimed at representativeness of the taxonomic and habitat diversity rather than at quantifying the harm the alien species cause. We used the generic impact scoring system (GISS) to rank 486 alien species established in Europe from a wide range of taxonomic groups to identify those with the highest environmental and socioeconomic impact. GISS assigns 12 categories of impact, each quantified on a scale from 0 (no impact detectable) to 5 (the highest impact possible). We ranked species by their total sum of scores and by the number of the highest impact scores. We also compared the listing based on GISS with other expert-based lists of the ‘‘worst’’ invaders. We propose a list of 149 alien species, comprising 54 plants, 49 invertebrates, 40 vertebrates and 6 fungi. Among the highest ranking species are one bird (Branta canadensis), four mammals (Rattus norvegicus, Ondatra zibethicus, Cervus nippon, Muntiacus reevesi), one crayfish (Procambarus clarkii), one mite (Varroa destructor), and four plants (Acacia dealbata, Lantana camara, Pueraria lobata, Eichhornia crassipes). In contrast to other existing expert-based ‘‘worst’’ lists, the GISS-based list given here highlights some alien species with high impacts that are not represented on any other list. The GISS provides an objective and transparent method to aid prioritization of alien species for management according to their impacts, applicable across taxa and habitats. Our ranking can also be used for justifying inclusion on lists such as the alien species of Union concern of the European Commission, and to fulfill Aichi target 9.
- ItemOpen minded and open access : introducing NeoBiota, a new peer-reviewed journal of biological invasions(Pensoft, 2011) Kuhn, Ingolf; Kowarik, Ingo; Kollmann, Johannes; Starfinger, Uwe; Bacher, Sven; Blackburn, Tim M.; Bustamante, Ramiro O.; Celesti-Grapow, Laura; Chytry, Milan; Colautti, Robert I.; Essl, Franz; Foxcroft, Llewellyn C.; Garcia-Berthou, Emili; Gollasch, Stephan; Hierro, Jose; Hufbauer, Ruth A.; Hulme, Philip E.; Jarosik, Vojtech; Jeschke, Jonathan M.; Karrer, Gerhard; Mack, Richard N.; Molofsky, Jane; Murray, Brad R.; Nentwig, Wolfgang; Osborne, Bruce; Pysek, Petr; Rabitsch, Wolfgang; Rejmanek, Marcel; Roques, Alain; Shaw, Richard; Sol, Daniel; Van Kleunen, Mark; Vila, Montserrat; Von der Lippe, Moritz; Wolfe, Lorne M.; Penev, LyubomirThe Editorial presents the focus, scope, policies, and the inaugural issue of NeoBiota, a new open access peer-reviewed journal of biological invasions. The new journal NeoBiota is a continuation of the former NEOBIOTA publication series. The journal will deal with all aspects of invasion biology and impose no restrictions on manuscript size neither on use of color. NeoBiota implies an XML-based editorial workflow and several cutting-edge innovations in publishing and dissemination, such as semantic markup of and enhancements to published texts, data publication, and extensive cross-linking within the journal and to external sources.
- ItemScientists’ warning on invasive alien species(Wiley, 2019) Pysek, Petr; Hulme, Philip E.; Simberloff, Dan; Bacher, Sven; Blackburn, Tim M.; Carlton, James T.; Dawson, Wayne; Essl, Franz; Foxcroft, Llewellyn C.; Genovesi, Piero; Jeschke, Jonathan M.; Kühn, Ingolf; Liebhold, Andrew M.; Mandrak, Nicholas E.; Meyerson, Laura A.; Pauchard, Aníbal; Pergl, Jan; Roy, Helen E.; Seebens, Hanno; Van Kleunen, Mark; Vila, Montserrat; Wingfield, Michael J.; Richardson, David M.Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long-term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long-term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.
- ItemTroubling travellers : are ecologically harmful alien species associated with particular introduction pathways?(Pensoft Publishers, 2017) Pergl, Jan; Pysek, Petr; Bacher, Sven; Essl, Franz; Genovesi, Piero; Harrower, Colin A.; Hulme, Philip E.; Jeschke, Jonathan M.; Kenis, Marc; Kuhn, Ingolf; Perglova, Irena; Rabitsch, Wolfgang; Roques, Alain; Roy, David B.; Roy, Helen E.; Vila, Montserrat; Winter, Marten; Nentwig, WolfgangPrioritization of introduction pathways is seen as an important component of the management of biological invasions. We address whether established alien plants, mammals, freshwater fish and terrestrial invertebrates with known ecological impacts are associated with particular introduction pathways (release, escape, contaminant, stowaway, corridor and unaided). We used the information from the European alien species database DAISIE (www.europe-aliens.org) supplemented by the EASIN catalogue (European Alien Species Information Network), and expert knowledge. Plants introduced by the pathways release, corridor and unaided were disproportionately more likely to have ecological impacts than those introduced as contaminants. In contrast, impacts were not associated with particular introduction pathways for invertebrates, mammals or fish. Thus, while for plants management strategies should be targeted towards the appropriate pathways, for animals, management should focus on reducing the total number of taxa introduced, targeting those pathways responsible for high numbers of introductions. However, regardless of taxonomic group, having multiple introduction pathways increases the likelihood of the species having an ecological impact. This may simply reflect that species introduced by multiple pathways have high propagule pressure and so have a high probability of establishment. Clearly, patterns of invasion are determined by many interacting factors and management strategies should reflect this complexity.
- ItemA unified classification of alien species based on the magnitude of their environmental impacts(PLoS, 2014) Blackburn, Tim M.; Essl, Franz; Evans, Thomas; Hulme, Philip E.; Jeschke, Jonathan M.; Kuhn, Ingolf; Kumschick, Sabrina; Markova, Zuzana; Mrugala, Agata; Nentwig, Wolfgang; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Genovesi, Piero; Bacher, SvenSpecies moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact—ranging from Minimal to Massive—with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.
- ItemA unified classification on alien species based on the magnitude of their environmental impacts(Public Library of Science, 2014-05-06) Blackburn, Tim M.; Essl, Franz; Evans, Thomas; Hulme, Philip E.; Jeschke, Jonathan M.; Kuhn, Ingolf; Kumschick, Sabrina; Markova, Zuzana; Mrugala, Agata; Nentwig, Wolfgang; Pergl, Jan; Pysek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Genovesi, Piero; Bacher, SvenSpecies moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to themagnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact— ranging from Minimal to Massive—with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications.We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.