Browsing by Author "Vigentini, Ileana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemInvestigating the effect of selected non-saccharomyces species on wine ecosystem function and major volatiles(Frontiers Media, 2018-11-13) Bagheri, Bahareh; Zambelli, Paolo; Vigentini, Ileana; Bauer, Florian; Setati, Mathabatha Evodia; Cao, MingfengNatural alcoholic fermentation is initiated by a diverse population of several non-Saccharomyces yeast species. However, most of the species progressively die off, leaving only a few strongly fermentative species, mainly Saccharomyces cerevisiae. The relative performance of each yeast species is dependent on its fermentation capacity, initial cell density, ecological interactions as well as tolerance to environmental factors. However, the fundamental rules underlying the working of the wine ecosystem are not fully understood. Here we use variation in cell density as a tool to evaluate the impact of individual non-Saccharomyces wine yeast species on fermentation kinetics and population dynamics of a multi-species yeast consortium in synthetic grape juice fermentation. Furthermore, the impact of individual species on aromatic properties of wine was investigated, using Gas Chromatography-Flame Ionization Detector. Fermentation kinetics was affected by the inoculation treatment. The results show that some non-Saccharomyces species support or inhibit the growth of other non-Saccharomyces species in the multi-species consortium. Overall, the fermentation inoculated with a high cell density of Starmerella bacillaris displayed the fastest fermentation kinetics while fermentation inoculated with Hanseniaspora vineae showed the slowest kinetics. The production of major volatiles was strongly affected by the treatments, and the aromatic signature could in some cases be linked to specific non-Saccharomyces species. In particular, Wickerhamomyces anomalus at high cell density contributed to elevated levels of 2-Phenylethan-1-ol whereas Starm. bacillaris at high cell density resulted in the high production of 2-methylpropanoic acid and 3-Hydroxybutanone. The data revealed possible direct and indirect influences of individual non-Saccharomyces species within a complex consortium, on wine chemical composition.
- ItemTranscriptomics unravels the adaptive molecular mechanisms of Brettanomyces bruxellensis under SO2 stress in wine condition(Elsevier, 2020-03-10) Valdetara, Federica; Skalic, Miha; Fracassetti, Daniela; Louw, Marli; Compagno, Concetta; Du Toit, Maret; Foschino, Roberto; Petrovic, Uros; Divol, Benoit; Vigentini, IleanaSulfur dioxide is generally used as an antimicrobial in wine to counteract the activity of spoilage yeasts, including Brettanomyces bruxellensis. However, this chemical does not exert the same effectiveness on different B. bruxellensis yeasts since some strains can proliferate in the final product leading to a negative sensory profile due to 4-ethylguaiacol and 4-ethylphenol. Thus, the capability of deciphering the general molecular mechanisms characterizing this yeast species’ response in presence of SO2 stress could be considered strategic for a better management of SO2 in winemaking. A RNA-Seq approach was used to investigate the gene expression of two strains of B. bruxellensis, AWRI 1499 and CBS 2499 having different genetic backgrounds, when exposed to a SO2 pulse. Results revealed that sulphites affected yeast culturability and metabolism, but not volatile phenol production suggesting that a phenotypical heterogeneity could be involved for the SO2 cell adaptation. The transcriptomics variation in response to SO2 stress confirmed the strain-related response in B. bruxellensis and the GO analysis of common differentially expressed genes showed that the detoxification process carried out by SSU1 gene can be considered as the principal specific adaptive response to counteract the SO2 presence. However, nonspecific mechanisms can be exploited by cells to assist the SO2 tolerance; namely, the metabolisms related to sugar alcohol (polyols) and oxidative stress, and structural compounds.