Browsing by Author "Van Kralingen, Leon"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemControlled polymerization of amino acid derivatives(Stellenbosch : University of Stellenbosch, 2008-03) Van Kralingen, Leon; Bredenkamp, M. W.; Sanderson, Ron D.; University of Stellenbosch. Faculty of Science. Dept. of Chemistry and Polymer Science.This dissertation can be broken into two parts comprising different strategies to synthesise novel poly-amino acid based polymers. The use of recently developed nickel(0) and cobalt(0) metal catalysts for the living polymerization of α-amino acid-N-carboxyanhydrides (NCAs) to synthesise novel poly-amino acid polymers, comprising a polar, hydrophilic block and a neutral hydrophobic block, were investigated in the first part of this study. The hydrophilic block was made up of a random sequence of arginine (Arg, R), glycine (Gly, G) and aspartic acid (Asp, D) - poly-RGD. This was followed by a polyleucine (Leu, L) hydrophobic block. Success was limited with this system due to polymer precipitation during the polymerization reaction. Because of this precipitation, the amino acid composition of the hydrophilic block was changed to a random sequence of glutamic acid (Glu, E), cystein (Cys, C) and aspartic acid – poly-ECD. Here also, the success was limited because of polymer precipitation. A novel approach to the synthesis of hybrid poly-amino acid – synthetic polymer materials constitutes the second part of this study. The final polymeric structure can be described as a carboxylic acid functionalized polyethylene glycol (PEG) sheathed polylysine polymer. The technology involves the synthesis of a lysine NCA functionalized at the ε-amino group with an α,ω-bis(carboxymethyl) ether PEG. The distal carboxylic acid group was protected as a benzyl ester during synthesis and subsequent polymerization of the PEG-lysine-NCA macro-monomer. The polymerization was successfully initiated using n-butyl amine to form short homopolymer strands. Copolymerization with lysine-NCA was also achieved as well as the successful initiation using a generation 1.0 dendritic amine initiator, N,N,N’,N’-tetrakis(3-aminopropyl)-1,4-butanediamine (DAB-Am-4). These polymers were characterized by 1H NMR.
- ItemLigand modification of Pluronic F108 for use in immobilized metal affinity separation of bio-macromolecules(Stellenbosch : Stellenbosch University, 2002-03) Van Kralingen, Leon; Adendorff, H. J. A.; Bredenkamp, M. W.; Stellenbosch University. Faculty of Science. Dept. of Chemistry & Polymer Science.ENGLISH ABSTRACT: Inthis work we aim to put into place a system to separate or immobilise biomacromolecules by means ofimmobilised transition metal ions like nickel(II) or copper(II). Although the concept of immobilised metal affmity chromatography (IMAC) has been around since the early 1960's, the metal ions were always immobilised by covalent modification of the support matrix. Recently the concept of IMAC was applied to membranes, and again the metal ion was immobilised by covalent modification of the membrane surface. Inthis study we covalently modified the support matrix by attaching a linear, EDTA type ligand to the hydroxy end groups of a tri-block copolymer (polyethylene oxide (PEO)m = 129 - polypropylene oxide (PPO)n = 56 - polyethylene oxide (PEO)m= 129), Pluronic® F108. The middle block of this polymer, which is hydrophobic, will non-covalently adsorb onto the membrane surface through hydrophobic interaction. The hydrophilic outer blocks, with the ligand modified end groups, will associate with the aqueous substrate exposing the chelated metal ion for interaction with the bio-macromolecules. This affords a system which is recyclable, without replacing the membranes, simply by stripping the expired ligand modified-polymer and adsorbing fresh polymer. A series of model ligands and their complexes were synthesised and characterised, to study the coordination of the ligand around the metal ions. The model compounds were also essential in characterising the final product - the ligand modified Pluronic. Finally the ligand modified Pluronic was tested for its metal binding capabilities. This was done in aqueous solution by qualitatively comparing the UV-VIS spectra of the modified Pluronic with that of the model ligands and complexes. The spectra indicate that metal coordination does take place.