Browsing by Author "Tonnard, Manon"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemDissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01)(2020-02-21) Tonnard, Manon; Planquette, Hélène; Bowie, Andrew RossDissolved Fe (DFe) samples from the GEOVIDE voyage (GEOTRACES GA01, May–June 2014) in the North Atlantic Ocean were analysed using a SeaFAST-picoTM coupled to an Element XR HR-ICP-MS and provided interesting insights on the Fe sources in this area. Overall, DFe concentrations ranged from 0.09 ± 0.01 nmol L−1 to 7.8 ± 0.5 nmol L−1. Elevated DFe concentrations were observed above the Iberian, Greenland and Newfoundland Margins likely due to riverine inputs from the Tagus River, meteoric water inputs and sedimentary inputs. Air-sea interactions were suspected to be responsible for the increase in DFe concentrations within subsurface waters of the Irminger Sea due to deep convection occurring the previous winter, that provided iron-to-nitrate ratios sufficient to sustain phytoplankton growth. Increasing DFe concentrations along the flow path of the Labrador Sea Water were attributed to sedimentary inputs from the Newfoundland Margin. Bottom waters from the Irminger Sea displayed high DFe concentrations likely due to the dissolution of Fe-rich particles from the Denmark Strait Overflow Water and the Polar Intermediate Water. Finally, the nepheloid layers were found to act as either a source or a sink of DFe depending on the nature of particles.
- ItemIntroduction to the French GEOTRACES North Atlantic Transect (GA01) : GEOVIDE cruise(European Geosciences Union, 2018-11-29) Sarthou, Geraldine; Lherminier, Pascale; Achterberg, Eric P.; Alonso-Perez, Fernando; Bucciarelli, Eva; Boutorh, Julia; Bouvier, Vincent; Boyle, Edward A.; Branellec, Pierre; Carracedo, Lidia I.; Casacuberta, Nuria; Castrillejo, Maxi; Cheize, Marie; Pereira, Leonardo Contreira; Cossa, Daniel; Daniault, Nathalie; De Saint-Leger, Emmanuel; Dehairs, Frank; Deng, Feifei; De Gesincourt, Floriane Desprez; Devesa, Jeremy; Foliot, Lorna; Fonseca-Batista, Debany; Gallinari, Morgane; Garcia-Ibanez, Maribel I.; Gourain, Arthur; Grossteffan, Emilie; Hamon, Michel; Heimburger, Lars Eric; Henderson, Gideon M.; Jeandel, Catherine; Kermabon, Catherine; Lacan, Francois; Le Bot, Philippe; Le Goff, Manon; Le Roy, Emilie; Lefebvre, Alison; Leizour, Stephane; Lemaitre, Nolwenn; Masque, Pere; Menage, Olivier; Barraqueta, Jan-Lukas Menzel; Mercier, Herle; Perault, Fabien; Perez, Fiz F.; Planquette, Helene F.; Planchon, Frederic; Roukaerts, Arnout; Sanial, Virginie; Sauzede, Raphaelle; Schmechtig, Catherine; Shelley, Rachel U.; Stewart, Gillian; Sutton, Jill N.; Tang, Yi; Tisnerat-Laborde, Nadine; Tonnard, Manon; Treguer, Paul; Van Beek, Pieter; Zurbrick, Cheryl M.; Zunino, PatriciaThe GEOVIDE cruise, a collaborative project within the framework of the international GEOTRACES programme, was conducted along the French-led section in the North Atlantic Ocean (Section GA01), between 15 May and 30 June 2014. In this special issue (https://www.biogeosciences.net/special_issue900.html), results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 18 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
- ItemRegulation of the phytoplankton heme b iron pool during the North Atlantic spring bloom(Frontiers Media, 2019-07-11) Louropoulou, Evangelia; Gledhill, Martha; Browning, Thomas J.; Desai, Dhwani K.; Barraqueta, Jan-Lukas Menzel; Tonnard, Manon; Sarthou, Geraldine; Planquette, Helene; Bowie, Andrew R.; Schmitz, Ruth A.; LaRoche, Julie; Achterberg, Eric P.Heme b is an iron-containing co-factor in hemoproteins. Heme b concentrations are low (<1 pmol L⁻²) in iron limited phytoplankton in cultures and in the field. Here, we determined heme b in marine particulate material (>0.7 μm) from the North Atlantic Ocean (GEOVIDE cruise – GEOTRACES section GA01), which spanned several biogeochemical regimes. We examined the relationship between heme b abundance and the microbial community composition, and its utility for mapping iron limited phytoplankton. Heme b concentrations ranged from 0.16 to 5.1 pmol L⁻² (median = 2.0 pmol L⁻², n = 62) in the surface mixed layer (SML) along the cruise track, driven mainly by variability in biomass. However, in the Irminger Basin, the lowest heme b levels (SML: median = 0.53 pmol L⁻², n = 12) were observed, whilst the biomass was highest (particulate organic carbon, median = 14.2 μmol L⁻², n = 25; chlorophyll a: median = 2.0 nmol L⁻², n = 23) pointing to regulatory mechanisms of the heme b pool for growth conservation. Dissolved iron (DFe) was not depleted (SML: median = 0.38 nmol L⁻², n = 11) in the Irminger Basin, but large diatoms (Rhizosolenia sp.) dominated. Hence, heme b depletion and regulation is likely to occur during bloom progression when phytoplankton class-dependent absolute iron requirements exceed the available ambient concentration of DFe. Furthermore, high heme b concentrations found in the Iceland Basin and Labrador Sea (median = 3.4 pmol L⁻², n = 20), despite having similar DFe concentrations to the Irminger Basin, were attributed to an earlier growth phase of the extant phytoplankton populations. Thus, heme b provides a snapshot of the cellular activity in situ and could both be used as indicator of iron limitation and contribute to understanding phytoplankton adaptation mechanisms to changing iron supplies.