Browsing by Author "Styger, Gustav"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemElucidating the metabolic pathways responsible for higher alcohol production in Saccharomyces cerevisiae(Stellenbosch : University of Stellenbosch, 2011-03) Styger, Gustav; Bauer, Florian; University of Stellenbosch. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Alcoholic fermentation, and especially wine fermentation, is one of the most ancient microbiological processes utilized by man. Yeast of the species Saccharomyces cerevisiae are usually responsible for most of the fermentative activity, and many data sets clearly demonstrate the important impact of this species on the quality and character of the final product. However, many aspects of the genetic and metabolic processes that take place during alcoholic fermentation remain poorly understood, including the metabolic processes that impact on aroma and flavour of the fermentation product. To contribute to our understanding of these processes, this study took two approaches: In a first part, the initial aim had been to compare two techniques of transcriptome analysis, DNA oligo-microarrays and Serial Analysis of Gene Expression (SAGE), for their suitability to assess wine fermentation gene expression changes, and in particular to assess their potential to, in combination, provide combined quantitative and qualitative data for mRNA levels. The SAGE methodology however failed to produce conclusive data, and only the results of the microarray data are shown in this dissertation. These results provide a comprehensive overview of the transcriptomic changes during model wine fermentation, and serve as a reference database for the following experiments and for future studies using different fermentation conditions or genetically modified yeast. In a second part of the study, a screen to identify genes that impact on the formation of various important volatile aroma compounds including esters, fatty acids and higher alcohols is presented. Indeed, while the metabolic network that leads to the formation of these compounds is reasonably well mapped, surprisingly little is known about specific enzymes involved in specific reactions, the genetic regulation of the network and the physiological roles of individual pathways within the network. Various factors that directly or indirectly affect and regulate the network have been proposed in the past, but little conclusive evidence has been provided. To gain a better understanding of the regulations and physiological role of this network, we took a functional genomics approach by screening a subset of the EUROSCARF strain deletion library, and in particular genes encoding decarboxylases, dehydrogenases and reductases. Thus, ten genes whose deletion impacted most significantly on the aroma production network and higher alcohol formation were selected. Over-expression and single and multiple deletions of the selected genes were used to genetically assess their contribution to aroma production and to the Ehrlich pathway. The results demonstrate the sensitivity of the pathway to cellular redox homeostasis, strongly suggest direct roles for Thi3p, Aad6p and Hom2p, and highlight the important role of Bat2p in controlling the flux through the pathway.
- ItemIdentifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols(Springer-Verslag, 2011-05) Styger, Gustav; Jacobson, Dan; Bauer, FlorianDuring alcoholic fermentation, many volatile aroma compounds are formed by Saccharomyces cerevisiae, including esters, fatty acids, and higher alcohols. While the metabolic network that leads to the formation of these compounds is reasonably well mapped, surprisingly little is known about specific enzymes involved in specific reactions, the regulation of the network, and the physiological roles of individual pathways within the network. Furthermore, different yeast strains tend to produce significantly different aroma profiles. These differences are of tremendous biotechnological interest, since producers of alcoholic beverages such as wine and beer are searching for means to diversify and improve their product range. Various factors such as the redox, energy, and nutritional balance of a cell have previously been suggested to directly or indirectly affect and regulate the network. To gain a better understanding of the regulations and physiological role of this network, we screened a subset of the EUROSCARF strain deletion library for genes that, when deleted, would impact most significantly on the aroma profile produced under fermentative conditions. The 10 genes whose deletion impacted most significantly on higher alcohol production were selected and further characterized to assess their mode of action within or on this metabolic network. This is the first description of a large-scale screening approach using aroma production as the primary selection criteria, and the data suggest that many of the identified genes indeed play central and direct roles within the aroma production network of S. cerevisiae.
- ItemThe role of steroidogenic factor-1 (SF-1) in transcriptional regulation of the gonadotropin-releasing hormone (GnRH) receptor gene(Stellenbosch : Stellenbosch University, 2001-03) Styger, Gustav; Hapgood, J. P.; Stellenbosch University. Faculty of Science. Dept. of Biochemistry.ENGLISH ABSTRACT: The GnRH receptor is a G-protein-coupled receptor in pituitary gonadotrope cells. Binding of its ligand, GnRH, results in synthesis and release of gonadotropin hormones luteinizing hormone (LH) and follicle stimulating hormone (FSH). Steroidogenic factor 1 (SF-1), a transcription factor, binds to specific sites in the promoter region of gonadotropin genes, and thus regulates transcription of these genes. The promoter region of the GnRHreceptor gene contains two SF-1-like binding sites, one at -14 to -8 (site 1) and another at -247 to -239 (site 2), relative to the methionine start codon. The role played by these two SF-1-like sites in basal transcription of the mouse GnRH receptor (mGnRH-R) gene in a pituitary precursor gonadotrope cell line, aT3 cells, was the first area of investigation during this study. Luciferase reporter constructs containing 580 bp of mGnRH-R gene promoter were prepared, where SF-1-like sites were either wildtype or mutated. Four such constructs were made, i.e. wildtype (LG), site 1 mutant (LGM1), site 2 mutant (LGM2) and mutated site 1 plus site 2 (LGM1/2). These constructs were transfected into aT3 cells to determine the effect of mutations of sites 1 and/or 2 on the basal expression of the mGnRH-R gene. Mutation of either site 1 or site 2 had no effect on basal expression of the mGnRH-R gene. It was found that only upon simultaneous mutation of both sites 1 and 2, a 50% reduction in basal transcription took place. The implications of this is that SF-1 protein seems to only require one intact DNA-binding site, to mediate basal transcription of the mGnRH-R gene, suggesting that these two sites lie in close proximity during basal transcription. The effect of the protein kinase A (PKA) pathway on the endogenous mGnRH-R gene was also investigated by incubating non- , transfected aT3 cells with the PKA activators, forskolin and 8-Br-cAMP. Similar incubations were also performed on the wild type and mutated site 1 constructs transfected into pituitary gonadotrope aT3 cells. It was found that forskolin and 8-Br-cAMP were able to increase endogenous mGnRH-R mRNA levels in a concentration-dependent fashion, showing that endogenous GnRH receptor gene expression is stimulated via a protein kinase A pathway. Similar results were obtained with the wildtype promoter construct, showing that the protein kinase A pathway stimulates transcription of the promoter. This effect was only seen with wild type and not with the mutated site 1. These results are consistent with a role for a SF-1-like transcription factor in mediating the protein kinase A effect via binding to the site 1 at position -14 in the GnRH receptor gene. A separate investigation was performed to determine whether 25-hydroxycholesterol (25-0HC) is a ligand for SF-1, by incubating aT3 cells transfected with the various constructs with 25-0HC. Results show a dose-dependant response, with an increase in gene expression at 1 μM and a decrease at higher concentrations, for both mutant and wild type constructs. This suggests that, if SF-1 is indeed the protein binding to sites 1 and 2, then 25-0HC is not a ligand for SF-1 protein in aT3 cells and that the effect of 25-0HC on the mGnRH-R gene is not mediated via site 1. The results indicate that these decreases of expression at the higher concentrations may be due to cytotoxic effects. Towards the end of the study the laboratory obtained a luminoskan instrument with automatic dispensing features. Optimisation studies on the luciferase and β-Gal assays were performed on the luminoskan in a bid to decrease experimental error. It was found that automation of these assays resulted in a decrease in experimental error, showing that future researchers could benefit substantially from these optimisation studies.