Browsing by Author "Sparrow, DE"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemAn Architecture for the Integration of Human Workers into an Industry 4.0 Manufacturing Environment.(Stellenbosch : Stellenbosch University, 2021-04) Sparrow, DE; Kruger, K; Basson, AH; Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.ENGLISH SUMMARY: With the rise of Industry 4.0 and the development in technologies that contribute to this revolution in manufacturing, research has focused mainly on the machines and automated digital systems contributing to the manufacturing environment. Humans are still critical to manufacturing; offering unmatched ingenuity, robustness, and flexibility despite their apparent disadvantages in strength or precision. Many successful manufacturing firms still include humans in their manufacturing processes for these reasons, and it is critical that the integration of humans in an I4.0 manufacturing environment is given research attention. This dissertation first explores the requirements for the integration of human workers into an I4.0 environment. It was determined that the largest problem with human integration exists with data related to the human being digitised, managed, and communicated with other entities in processes that are identified as Administrative Logistics. It is identified that an administration shell similar to the RAMI4.0 administration shell concept is required to manage these Administrative Logistics on behalf of the human, and that a holonic systems approach is beneficial. The dissertation then proposes the concept of a Human Resource Holon Administration shell (HRH-AS). An architecture to implement such an administration shell is then developed, here named the BASE architecture. This administration shell facilitates the interfacing, data processing, and connectivity to other I4.0 components on behalf of the human, to aid in their integration to the digital factory environment around them. The BASE architecture addresses three identified responsibilities of such an administration shell, namely interfacing, digital data management, and delegation to other I4.0 components. BASE stands for Biography, Attributes, Schedule, and Execution, and is a time-based separation of concerns for key augmentations provided to the human worker. The BASE architecture separates value-adding and decision-making plugin components, which are specific to an application, from the core components, which are generic to any application. The BASE architecture led to the development of the 3SAL activity structure to facilitate the communication and management of industrial activities in a digital environment. With the help of an industry partner, two case studies were developed to evaluate an implementation of the BASE architecture. The company is an aerospace composites manufacturer and was chosen for the labour-intensive requirements of the composites industry. The case studies aimed to evaluate the architecture against the three identified administration shell responsibilities and determine if the human workers are elevated to resource holon status. The first case study aimed to show how BASE facilitates interfacing with humans in an I4.0 environment and also acted as a technology demonstrator for the second case study. The second case study evaluated the effect BASE had on the Administrative Logistics involved in the business processes workers were involved in. Together these case studies fully evaluate BASE’s ability to facilitate the integration of humans into an I4.0 manufacturing environment through identified responsibilities of the administration shell. The evaluation found that the BASE HRH-AS improves the effectiveness of Administrative Logistics of business processes the human workers were involved with, as well as opened new opportunities for decision making on the shop floor previously not possible. Value-adding, by means of the plug-in components of a BASE administration shell, has also been proven by the ability to do automated schedule management, automatic calculation of standard work and improved traceability using the 3SAL activity structure.