Browsing by Author "Sivarasu, Sudesh"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDo anatomical contoured plates address scapula body, neck and glenoid fractures? A multi-observer consensus study(Medpharm Publications, 2021-11) De Wet, Japie; Dey, Roopam; Vrettos, Basil; Du Plessis, Jean-Pierre; Anley, Cameron; Rachuene, Pududu A.; Haworth, Leanne C.; Yimam, Habtamu M.; Sivarasu, Sudesh; Roche, Stephen J. L.Background: The surgical management of scapula body, neck and glenoid fractures remains a challenge. This study focuses on templating an available anatomical pre-contoured plating system using three-dimensional (3D)-printed scapulae to assess the ability of these plates to address the aforementioned fractures and to determine consensus on classifying scapula body, neck and glenoid fractures. Methods: We used a cohort of 22 3D-printed scapulae prototypes and an available anatomical precontoured plating system to determine anatomical congruency and fit. Nine investigators templated the scapulae using four pre-contoured plates, and the investigators classified the 22 scapulae using the Ideberg and AO/OTA classification systems. Results: Eleven out of 22 fractures were found to be fixable using the plates under study. The long lateral plate addressed 83% of fractures involving the lateral border, while the glenoid plate was unable to adequately address any glenoid fractures. We observed good to excellent (p ≤ 0.001) interobserver reliability for three of the four plates. The interobserver reliability was moderate (ICC = 0.74) for the AO/OTA classification and good (ICC = 0.88) for the Ideberg classification. Conclusion: We believe that the anatomical pre-contoured plating system does not address all the fracture patterns encountered in clinical practice and further development in plate design is required. There is good to moderate interobserver reliability using the Ideberg fracture classification for intra-articular fractures and the AO/OTA classification for extra-articular fractures involving the body.
- ItemQuantitative fit analysis of acromion fracture plating systems using three-dimensional reconstructed scapula fractures – a multi-observer study(EDP Sciences, 2021) Charilaou, Johan; Dey, Roopam; Burger, Marilize; Sivarasu, Sudesh; Van Staden, Ruan; Roche, StephenIntroduction: Surgical treatment of displaced acromial and scapula spine fractures may be challenging due to the bony anatomy and variable fracture patterns. This difficulty is accentuated by the limitations of the available scapular plates for fracture fixation. This study compares the quantitative fitting of anatomic scapular plates and clavicle plates, using three-dimensional (3D) printed fractured scapulae. Methods: Fourteen scapulae with acromion and spine fractures were used for this study. Computerized tomographic (CT) scans of the fractured scapulae were obtained from the Philips picture archiving and communication system (PACS) database of patients admitted to a tertiary teaching hospital in Cape Town, South Africa between 2012 and 2016. The reconstructed scapulae were 3D printed and the anatomical acromion and clavicle plates were templated about the fracture regions. The fit assessment was performed by five observers who classified the plates as no-fit, intermediate fit, and anatomical fit according to the surgical guidelines. Results: The 6-hole anterior clavicle plate performed better than any of the scapular plates as they were able to fit 45.7% of the fractured acromion, including the spine. Among the pre-contoured anatomical scapula plates, both the short and the long acromion plates could fit only 27.3% of the fractured acromion. The intraclass correlation coefficient was 0.965 suggesting excellent consensus among the five observers. Conclusion: Clavicle plates were found to be better suited to fit around a scapula fracture in its acromion and spine region.