Browsing by Author "Salie, Muneeb"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemInvestigating candidate genes identified by genome-wide studies of granulomatous diseases in susceptibility to tuberculosis: ANXA11 and the CADM family(Stellenbosch : University of Stellenbosch, 2010-12) Salie, Muneeb; Hoal, Eileen; Moller, Marlo; University of Stellenbosch. Faculty of Health Sciences. Dept. of Biomedical Sciences. Molecular Biology and Human GeneticsENGLISH ABSTRACT: The infectious disease tuberculosis (TB) remains the leading cause of death worldwide by a single infectious agent, despite significant advances in biomedical sciences. The idea that host genetics plays a role in the development of disease was proposed by Haldane in 1949. The observation that only 10% of immunocompetent individuals develop disease while others are able to successfully contain it, further suggests that host genetics plays an important role. TB is thus a complex disease, with the causative bacterium, Mycobacterium tuberculosis, host genetic factors and environment all contributing to the development of disease. To date several genes have been implicated in TB susceptibility, albeit with small effect. Genome-wide association studies (GWAS) offer the means to identify novel susceptibility variants and pathways through their ability to interrogate polymorphisms throughout the genome without being limited by our understanding of the immune processes involved in TB infection and disease progression. TB and sarcoidosis are both granulomatous diseases, and we therefore hypothesized that the genes and their associated variants identified in recent GWAS conducted in West Africa for TB, and Germany for sarcoidosis, could alter susceptibility to TB in the South African Coloured (SAC) population. In the sarcoidosis GWAS, ANXA11 was shown to alter susceptibility to sarcoidosis; whereas in the TB GWAS, CADM1 was found to alter susceptibility to TB. This study tested the association with TB of 16 polymorphisms in 5 potential TB host susceptibility genes in the SAC population. A well designed case-control study was employed, using the TaqMan® genotyping system to type the various polymorphisms. Any polymorphism that was found to be significantly associated with susceptibility to TB was then subjected to further analysis to determine the functional effect of the polymorphism. Promoter methylation patterns were also investigated in ANXA11 as another mechanism to elucidate its role in TB susceptibility. A 3’ UTR ANXA11 polymorphism was found to be strongly associated with susceptibility to TB, including 3 haplotypes. The gene expression analysis identified differential transcriptional levels between individual with the different genotypes, with individuals homozygous for the A-allele exhibiting a 1.2-fold increase in gene expression relative to those homozygous for the G-allele. Methylation analysis however found no differences between cases and controls. In addition, 16 novel polymorphisms were also identified, 15 of which occurred in the 3’UTR of ANXA11. The mechanism of action of ANXA11 in TB susceptibility is hypothesised to be in the area of endocytosis, autophagy or apoptosis. A weak association was noted with one of the 5’ UTR polymorphisms of CADM3, which did not hold up to further analysis in the GWAS study, and no functional work was therefore done. This work facilitates our understanding of the role of host genetics in susceptibility to TB and adds to the growing amount of information available. Proper understanding of the role that host genetics plays in TB susceptibility could result in better treatment regimens and prediction of individuals who are at a greater risk of developing TB, a disease that still kills millions of individuals annually.
- ItemA panel of ancestry informative markers for the complex five-way admixed South African Coloured population(PLoS, 2013-12) Daya, Michelle; Van der Merwe, Lize; Ushma Galal; Möller, Marlo; Salie, Muneeb; Chimusa, Emile R.; Galanter, Joshua M.; Van Helden, Paul D.; Henn, Brenna M.; Gignoux, Chris R.; Hoal, EileenAdmixture is a well known confounder in genetic association studies. If genome-wide data is not available, as would be the case for candidate gene studies, ancestry informative markers (AIMs) are required in order to adjust for admixture. The predominant population group in the Western Cape, South Africa, is the admixed group known as the South African Coloured (SAC). A small set of AIMs that is optimized to distinguish between the five source populations of this population (African San, African non-San, European, South Asian, and East Asian) will enable researchers to cost-effectively reduce falsepositive findings resulting from ignoring admixture in genetic association studies of the population. Using genome-wide data to find SNPs with large allele frequency differences between the source populations of the SAC, as quantified by Rosenberg et. al’s In-statistic, we developed a panel of AIMs by experimenting with various selection strategies. Subsets of different sizes were evaluated by measuring the correlation between ancestry proportions estimated by each AIM subset with ancestry proportions estimated using genome-wide data. We show that a panel of 96 AIMs can be used to assess ancestry proportions and to adjust for the confounding effect of the complex five-way admixture that occurred in the South African Coloured population.
- ItemThe role of the major histocompatibility complex and the Leukocyte receptor complex genes in susceptibility to tuberculosis in a South African population(Stellenbosch : Stellenbosch University, 2014-04) Salie, Muneeb; Hoal, Eileen; Moller, Marlo; Stellenbosch University. Faculty of Medicine and Health Sciences. Dept. of Biomedical Science, Molecular Biology and Human Genetics.ENGLISH ABSTRACT: Tuberculosis (TB) disease results in approximately 2 million deaths annually and is the leading cause of death due to a single infectious agent. Previous studies have indicated that host genetics play an important role in the development of TB. This together with pathogen and environmental factors intensifies the complexity of this disease. The Major Histocompatibility Complex (MHC) and Leukocyte Receptor Complex (LRC) comprise several genes which are known to be important modulators of the host immune response. The human leukocyte antigen (HLA) class-I genes of the MHC are involved in the presentation of pathogenic antigens on the surfaces of infected cells, while the killer cell immunoglobulin-like receptors (KIRs) of the LRC are involved in the recognition of self and non-self cells. Natural Killer (NK) cells through their KIRs are thus able to kill non-self cells through recognition of the class-I molecules expressed. Additionally, HLAs and KIRs are extremely polymorphic and differ markedly across populations of different ethnicities. Here we studied these genes and their polymorphisms in the South African Coloured (SAC) population to determine their involvement in susceptibility to TB, susceptibility to disease caused by specific Mycobacterium tuberculosis subtypes, and understanding their ancestral contribution to the SAC with regards to the development of TB. We showed that the KIR3DS1 gene and KIR genotypes with five or more activating KIRs, and the presence of 3DS1, protected against the development of active TB in the SAC population. Several HLA class-I alleles were identified as susceptibility factors for TB disease. With regards to genes of the MHC and LRC, several loci were found to alter susceptibility to TB in the SAC population, including MDC1, BTNL2, HLA-DOA, HLA-DOB, C6orf10, TAP2, LILRA5, NCR1, NLRP7 and the intergenic regions between HLA-C/WASF5P and LAIR1/TTYH1. We showed that the Beijing strain occurred more frequently in individuals with multiple disease episodes, with the HLA-B27 allele lowering the odds of having an additional episode. Associations were identified for specific HLA types and disease caused by the Beijing, Latin America-Mediterranean (LAM), Low-Copy Clade (LCC), and Quebec strains. HLA types were associated with disease caused by strains from the Euro-American or East Asian lineages, and the frequencies of these alleles in their sympatric human populations identified potential co-evolutionary events between host and pathogen. Finally, we showed that the SAC population is the most diverse SA population with regards to HLA alleles and KIR genotypes, as would be expected given the admixture of the SAC. Based on the HLA allele class-I profiles across SA populations, we noted that the Ag85BESAT- 6, Ag85B-TB10.4 and Mtb72f vaccines currently undergoing clinical trials would have low efficacy across most SA populations. We showed that the MHC and LRC regions in SAC healthy controls are predominantly of European ancestry, and that SAC TB cases are more closely related to Khoisan and black SA population groups. Our work highlights the importance of investigating both host and pathogen genetics when studying TB disease development and that understanding the genetic ancestral contributions to the SAC population can contribute to the identification of true and novel TB causing variants.
- ItemTLR1, 2, 4, 6 and 9 variants associated with tuberculosis susceptibility: a systematic review and meta-analysis(PLoS ONE, 2015) Schurz, Haiko; Daya, Michelle; Moller, Marlo; Hoal, Eileen G.; Salie, MuneebBackground: Studies investigating the influence of toll-like receptor (TLR) polymorphisms and tuberculosis susceptibility have yielded varying and often contradictory results in different ethnic groups. A meta-analysis was conducted to investigate the relationship between TLR variants and susceptibility to tuberculosis, both across and within specific ethnic groups. Methods: An extensive database search was performed for studies investigating the relationship between TLR and tuberculosis (TB) susceptibility. Data was subsequently extracted from included studies and statistically analysed. Results: 32 articles involving 18907 individuals were included in this meta-analysis, and data was extracted for 14 TLR polymorphisms. Various genetic models were employed. An increased risk of TB was found for individuals with the TLR2 rs3804100 CC and the TLR9 rs352139 GA and GG genotypes, while decreased risk was identified for those with the AG genotype of TLR1 rs4833095. The T allele of TLR6 rs5743810 conferred protection across all ethnic groups. TLR2 rs5743708 subgroup analysis identified the A allele to increase susceptibility to TB in the Asian ethnic group, while conferring protection in the Hispanic group. The T allele of TLR4 rs4986791 was also found to increase the risk of TB in the Asian subgroup. All other TLR gene variants investigated were not found to be associated with TB in this meta-analysis. Discussion: Although general associations were identified, most TLR variants showed no significant association with TB, indicating that additional studies investigating a wider range of pattern recognition receptors is required to gain a better understanding of this complex disease
- ItemThe X chromosome and sex-specific effects in infectious disease susceptibility(BMC (part of Springer Nature), 2019-01-08) Schurz, Haiko; Salie, Muneeb; Tromp, Gerard; Hoal, Eileen G.; Kinnear, Craig J.; Moller, MarloENGLISH ABSTRACT: The X chromosome and X-linked variants have largely been ignored in genome-wide and candidate association studies of infectious diseases due to the complexity of statistical analysis of the X chromosome. This exclusion is significant, since the X chromosome contains a high density of immune-related genes and regulatory elements that are extensively involved in both the innate and adaptive immune responses. Many diseases present with a clear sex bias, and apart from the influence of sex hormones and socioeconomic and behavioural factors, the X chromosome, X-linked genes and X chromosome inactivation mechanisms contribute to this difference. Females are functional mosaics for X-linked genes due to X chromosome inactivation and this, combined with other X chromosome inactivation mechanisms such as genes that escape silencing and skewed inactivation, could contribute to an immunological advantage for females in many infections. In this review, we discuss the involvement of the X chromosome and X inactivation in immunity and address its role in sexual dimorphism of infectious diseases using tuberculosis susceptibility as an example, in which male sex bias is clear, yet not fully explored.