Browsing by Author "Rossouw, Christoffel Jacobus"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemCoverage directed algorithms for test suite construction from LR-automata(Stellenbosch : Stellenbosch University, 2022-04) Rossouw, Christoffel Jacobus; Fischer, Bernd; Stellenbosch University. Faculty of Science. Dept. of Computer Science.ENGLISH ABSTRACT: Bugs in software can have disastrous results in terms of both economic cost and human lives. Parsers can have bugs, like any other type of software, and must therefore be thoroughly tested in order to ensure that a parser recognizes its intended language accurately. However, parsers often need to recognize many different variations and combinations of grammar structures which can make it time consuming and difficult to construct test suites by hand. We therefore require automated methods of test suite construction for these systems. Currently, the majority of test suite construction algorithms focus on the grammar describing the language to be recognized by the parser. In this thesis we take a different approach. We consider the LR-automaton that recognizes the target language and use the context information encoded in the automaton. Specifically, we define a new class of algorithm and coverage criteria over a variant of the LR-automaton that we define, called an LR-graph. We define methods of constructing positive test suites, using paths over this LR-graph, as well as mutations on valid paths to construct negative test suites. We evaluate the performance of our new algorithms against other state-of-the-art algorithms. We do this by comparing coverage achieved over various systems, some smaller systems used in a university level compilers course and other larger, real-world systems. We find good performance of our algorithms over these systems, when compared to algorithms that produce test suites of equivalent size. Our evaluation has uncovered a problem in grammar-based testing algorithms that we call bias. Bias can lead to significant variation in coverage achieved over a system, which can in turn lead to a flawed comparison of two algorithms or unrealized performance when a test suite is used in practice. We therefore define bias and measure it for all grammar-based test suite construction algorithms we use in this thesis.