Browsing by Author "Rohwer, Johann M."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemDelving deeper : relating the behaviour of a metabolic system to the properties of its components using symbolic metabolic control analysis(Public Library of Science, 2018-11-28) Christensen, Carl D.; Hofmeyr, Jan-Hendrik S.; Rohwer, Johann M.High-level behaviour of metabolic systems results from the properties of, and interactions between, numerous molecular components. Reaching a complete understanding of metabolic behaviour based on the system’s components is therefore a difficult task. This problem can be tackled by constructing and subsequently analysing kinetic models of metabolic pathways since such models aim to capture all the relevant properties of the system components and their interactions. Symbolic control analysis is a framework for analysing pathway models in order to reach a mechanistic understanding of their behaviour. By providing algebraic expressions for the sensitivities of system properties, such as metabolic flux or steadystate concentrations, in terms of the properties of individual reactions it allows one to trace the high level behaviour back to these low level components. Here we apply this method to a model of pyruvate branch metabolism in Lactococcus lactis in order to explain a previously observed negative flux response towards an increase in substrate concentration. With this method we are able to show, first, that the sensitivity of flux towards changes in reaction rates (represented by flux control coefficients) is determined by the individual metabolic branches of the pathway, and second, how the sensitivities of individual reaction rates towards their substrates (represented by elasticity coefficients) contribute to this flux control. We also quantify the contributions of enzyme binding and mass-action to enzyme elasticity separately, which allows for an even finer-grained understanding of flux control. These analytical tools allow us to analyse the control properties of a metabolic model and to arrive at a mechanistic understanding of the quantitative contributions of each of the enzymes to this control. Our analysis provides an example of the descriptive power of the general principles of symbolic control analysis.
- ItemDetermining enzyme kinetics for systems biology with nuclear magnetic resonance spectroscopy(MDPI, 2012) Eicher, Johann J.; Snoep, Jacky L.; Rohwer, Johann M.Enzyme kinetics for systems biology should ideally yield information about the enzyme’s activity under in vivo conditions, including such reaction features as substrate cooperativity, reversibility and allostery, and be applicable to enzymatic reactions with multiple substrates. A large body of enzyme-kinetic data in the literature is based on the uni-substrate Michaelis–Menten equation, which makes unnatural assumptions about enzymatic reactions (e.g., irreversibility), and its application in systems biology models is therefore limited. To overcome this limitation, we have utilised NMR time-course data in a combined theoretical and experimental approach to parameterize the generic reversible Hill equation, which is capable of describing enzymatic reactions in terms of all the properties mentioned above and has fewer parameters than detailed mechanistic kinetic equations; these parameters are moreover defined operationally. Traditionally, enzyme kinetic data have been obtained from initial-rate studies, often using assays coupled to NAD(P)H-producing or NAD(P)H-consuming reactions. However, these assays are very labour-intensive, especially for detailed characterisation of multi-substrate reactions. We here present a cost-effective and relatively rapid method for obtaining enzyme-kinetic parameters from metabolite time-course data generated using NMR spectroscopy. The method requires fewer runs than traditional initial-rate studies and yields more information per experiment, as whole time-courses are analyzed and used for parameter fitting. Additionally, this approach allows real-time simultaneous quantification of all metabolites present in the assay system (including products and allosteric modifiers), which demonstrates the superiority of NMR over traditional spectrophotometric coupled enzyme assays. The methodology presented is applied to the elucidation of kinetic parameters for two coupled glycolytic enzymes from Escherichia coli (phosphoglucose isomerase and phosphofructokinase). 31P-NMR time-course data were collected by incubating cell extracts with substrates, products and modifiers at different initial concentrations. NMR kinetic data were subsequently processed using a custom software module written in the Python programming language, and globally fitted to appropriately modified Hill equations.
- ItemThe glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent : implications for redox systems biology(Portland Press, 2015) Mashamaite, Lefentse N.; Rohwer, Johann M.; Pillay, Che S.Glutathionylation plays a central role in cellular redox regulation and anti-oxidative defence. Grx (Glutaredoxins) are primarily responsible for reversing glutathionylation and their activity therefore affects a range of cellular processes, making them prime candidates for computational systems biology studies. However, two distinct kinetic mechanisms involving either one (monothiol) or both (dithiol) active-site cysteines have been proposed for their deglutathionylation activity and initial studies predicted that computational models based on either of these mechanisms will have different structural and kinetic properties. Further, a number of other discrepancies including the relative activity of active-site mutants and contrasting reciprocal plot kinetics have also been reported for these redoxins. Using kinetic modelling, we show that the dithiol and monothiol mechanisms are identical and, we were also able to explain much of the discrepant data found within the literature on Grx activity and kinetics. Moreover, our results have revealed how an apparently futile side-reaction in the monothiol mechanism may play a significant role in regulating Grx activity in vivo.
- ItemImpact of glucocorticoid receptor density on ligand- independent dimerization, cooperative ligand-binding and basal priming of transactivation : a cell culture model(Public Library of Science -- PLoS, 2013-05) Robertson, Steven; Rohwer, Johann M.; Hapgood, Janet P; Louw, AnnGlucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoterreporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs.
- ItemThe logic of kinetic regulation in the thioredoxin system(BioMed Central, 2011-01) Pillay, Che S.; Hofmeyr, Jan-Hendrik S.; Rohwer, Johann M.Abstract: Background: The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system. Results: Analysis of a realistic computational model of the Escherichia coli thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models. Conclusions: Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions.
- ItemTracing regulatory routes in metabolism using generalised supply-demand analysis(BioMed Central, 2015-12) Christensen, Carl D.; Hofmeyr, Jan-Hendrik S.; Rohwer, Johann M.Background: Generalised supply-demand analysis is a conceptual framework that views metabolism as a molecular economy. Metabolic pathways are partitioned into so-called supply and demand blocks that produce and consume a particular intermediate metabolite. By studying the response of these reaction blocks to perturbations in the concentration of the linking metabolite, different regulatory routes of interaction between the metabolite and its supply and demand blocks can be identified and their contribution quantified. These responses are mediated not only through direct substrate/product interactions, but also through allosteric effects. Here we subject previously published kinetic models of pyruvate metabolism in Lactococcus lactis and aspartate-derived amino acid synthesis in Arabidopsis thaliana to generalised supply-demand analysis. Results: Multiple routes of regulation are brought about by different mechanisms in each model, leading to behavioural and regulatory patterns that are generally difficult to predict from simple inspection of the reaction networks depicting the models. In the pyruvate model the moiety-conserved cycles of ATP/ADP and NADH/NAD+ allow otherwise independent metabolic branches to communicate. This causes the flux of one ATP-producing reaction block to increase in response to an increasing ATP/ADP ratio, while an NADH-consuming block flux decreases in response to an increasing NADH/NAD+ ratio for certain ratio value ranges. In the aspartate model, aspartate semialdehyde can inhibit its supply block directly or by increasing the concentration of two amino acids (Lys and Thr) that occur as intermediates in demand blocks and act as allosteric inhibitors of isoenzymes in the supply block. These different routes of interaction from aspartate semialdehyde are each seen to contribute differently to the regulation of the aspartate semialdehyde supply block. Conclusions: Indirect routes of regulation between a metabolic intermediate and a reaction block that either produces or consumes this intermediate can play a much larger regulatory role than routes mediated through direct interactions. These indirect routes of regulation can also result in counter-intuitive metabolic behaviour. Performing generalised supply-demand analysis on two previously published models demonstrated the utility of this method as an entry point in the analysis of metabolic behaviour and the potential for obtaining novel results from previously analysed models by using new approaches.
- ItemUnderstanding glucose transport by the bacterial phophoenolpyruvate : glycose phosphotransferase system on the basis of kinetic measurments in vitro(Elsevier, 2000) Rohwer, Johann M.; Meadow, Norman D.; Roseman, Saul; Westerhoff, Hans V.; Postma, Pieter W.The kinetic parameters in vitro of the components of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) in enteric bacteria were collected. To address the issue of whether the behavior in vivo of the PTS can be understood in terms of these enzyme kinetics, a detailed kinetic model was constructed. Each overall phosphotransfer reaction was separated into two elementary reactions, the first entailing association of the phosphoryl donor and acceptor into a complex and the second entailing dissociation of the complex into dephosphorylated donor and phosphorylated acceptor. Literature data on theK m values and association constants of PTS proteins for their substrates, as well as equilibrium and rate constants for the overall phosphotransfer reactions, were related to the rate constants of the elementary steps in a set of equations; the rate constants could be calculated by solving these equations simultaneously. No kinetic parameters were fitted. As calculated by the model, the kinetic parameter values in vitro could describe experimental results in vivo when varying each of the PTS protein concentrations individually while keeping the other protein concentrations constant. Using the same kinetic constants, but adjusting the protein concentrations in the model to those present in cell-free extracts, the model could reproduce experiments in vitro analyzing the dependence of the flux on the total PTS protein concentration. For modeling conditions in vivo it was crucial that the PTS protein concentrations be implemented at their high in vivo values. The model suggests a new interpretation of results hitherto not understood; in vivo, the major fraction of the PTS proteins may exist as complexes with other PTS proteins or boundary metabolites, whereas in vitro, the fraction of complexed proteins is much smaller.
- ItemUnravelling the interconnections of cellular regulation(Stellenbosch : Stellenbosch University, 2012-10) Rohwer, Johann M.Johann Rohwer was born in Greytown on 25 May 1968 and grew up in the German settlement Hermannsburg in the KwaZulu-Natal Midlands. He received all his schooling at the Deutsche Schule Hermannsburg. After matriculating in 1985, a post-matric year (the German ‘Abitur’) at the Deutsche H¨ohere Privatschule inWindhoek followed. From 1987 to 1989 he studied for a BSc degree at Stellenbosch University, majoring in biochemistry, chemistry and mathematics. This was followed by a BScHons and an MSc in biochemistry (all cum laude), the latter under the supervision of Prof Jannie Hofmeyr, studying the regulation of serine biosynthesis in Escherichia coli. For his doctoral studies, Johann went to the Netherlands and investigated the regulation of bacterial sugar transport under the supervision of Prof HansWesterho and Dr Pieter Postma at the University of Amsterdam, graduating in April 1997. Upon his return to South Africa in 1997, Johann took up a position as Senior Lecturer in the Department of Biochemistry at Stellenbosch University and has been with the department ever since. He was promoted to Associate Professor in 2002 and to Full Professor in 2011. Under his supervision and co-supervision fourteen MSc students and seven PhD students obtained their degrees, and he has co-authored 45 peer-reviewed articles in international journals. Prof Rohwer was fortunate to spend two sabbaticals in overseas laboratories. During 2001, he visited Prof Philip Kuchel at the University of Sydney and learnt about applying the technique of NMR spectroscopy to study living cells in a non-invasive way. During 2008, he spent a year in Germany with his family as a research fellow of the Alexander von Humboldt Foundation, collaborating with Prof Mark Stitt at the Max Planck Institute of Molecular Plant Physiology on the modelling of central metabolism in plants. Johann’s research interests are computational and experimental systems biology, focusing on the analysis of the central metabolism of microbes and plants. He has received numerous awards, among others the Stellenbosch University Chancellor’s Medal (1993), the President’sAward fromthe South African National Research Foundation (2001), the Silver Medal of the South African Society of Biochemistry and Molecular Biology (2003), and the Vice Chancellor’s Award for Excellent Research from Stellenbosch University (2010). He serves on the international STRENDA Commission and on the editorial boards of BMC Systems Biology and Frontiers in Plant Systems Biology. Johann is married to Christa and they have three children–Nicola (9), Saskia (7) and Martin (19 months).
- ItemWorkflow for data analysis in experimental and computational systems biology : using Python as glue(MDPI, 2019-07-18) Badenhorst, Melinda; Barry, Christopher J.; Swanepoel, Christiaan J.; Van Staden, Charles Theo; Wissing, Julian; Rohwer, Johann M.ENGLISH ABSTRACT: Bottom-up systems biology entails the construction of kinetic models of cellular pathways by collecting kinetic information on the pathway components (e.g., enzymes) and collating this into a kinetic model, based for example on ordinary differential equations. This requires integration and data transfer between a variety of tools, ranging from data acquisition in kinetics experiments, to fitting and parameter estimation, to model construction, evaluation and validation. Here, we present a workflow that uses the Python programming language, specifically the modules from the SciPy stack, to facilitate this task. Starting from raw kinetics data, acquired either from spectrophotometric assays with microtitre plates or from Nuclear Magnetic Resonance (NMR) spectroscopy time-courses, we demonstrate the fitting and construction of a kinetic model using scientific Python tools. The analysis takes place in a Jupyter notebook, which keeps all information related to a particular experiment together in one place and thus serves as an e-labbook, enhancing reproducibility and traceability. The Python programming language serves as an ideal foundation for this framework because it is powerful yet relatively easy to learn for the non-programmer, has a large library of scientific routines and active user community, is open-source and extensible, and many computational systems biology software tools are written in Python or have a Python Application Programming Interface (API). Our workflow thus enables investigators to focus on the scientific problem at hand rather than worrying about data integration between disparate platforms.