Browsing by Author "Roberts, Timothy"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemColorectal cancer is associated with increased circulating lipopolysaccharide, inflammation and hypercoagulability(Nature Research (part of Springer Nature), 2020-05-29) De Waal, Greta M.; De Villiers, Willem J. S.; Forgan, Timothy; Roberts, Timothy; Pretorius, EtheresiaGut dysbiosis contributes to the development of a dysfunctional gut barrier, facilitating the translocation of bacteria and inflammagens, and is implicated in colorectal cancer (CRC) pathogenesis. Such ‘leaky gut’ conditions result in systemic inflammation, of which a hallmark is increased hypercoagulability. Fluorescence antibody confocal microscopy was used to determine circulating levels of lipopolysaccharide (LPS) in control and CRC populations. Here we showed that circulating levels of LPS are significantly elevated in the CRC population. We also showed that markers of inflammation and hypercoagulability are increased in this population. Furthermore, anomalous blood clotting and structural changes in blood components are presented. Importantly, the association between LPS levels, inflammation, and hematological dysfunction was analysed. Statistical regression models were applied to identify markers with strong association with CRC, and to investigate the correlation between markers. A core aim is enhanced biomarker discovery for CRC. We conclude that circulating LPS can promote systemic inflammation and contribute to the development of a pathological coagulation system, with resulting chronic inflammation and an activated coagulation system implicated in tumorigenesis. Blood-based screening tools are an emerging research area of interest for CRC screening. We propose the use of additional (novel) biomarkers to effectively screen for CRC.
- ItemInflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation(BMC (part of Springer Nature), 2019-06-04) Randeria, Shehan N.; Thomson, Greig J. A.; Nell, Theo A.; Roberts, Timothy; Pretorius, EtheresiaBackground: The global burden of type 2 diabetes mellitus (T2DM), together with the presence of cardiovascular risk in this population, is reaching pandemic levels. A prominent feature of T2DM is chronic and systemic inflammation, with the accompanying presence of circulating and dysregulated inflammatory biomarkers; which in turn is associated with abnormal clot formation. Methods: Here, we investigate the correlation between abnormal blood clotting, using thromboelastography (TEG), clot ultrastructure using scanning electron microscopy (SEM) and the presence of a dysregulated inflammatory cytokine profile, by examining various circulating biomarkers. Results: Our results show that many biomarkers, across TEG, cytokine and lipid groups, were greatly dysregulated in the T2DM sample. Furthermore, our T2DM sample’s coagulation profiles were significantly more hypercoagulable when compared to our heathy sample, and ultrastructural analysis confirmed a matted and denser clot structure in the T2DM sample. Conclusions: We suggest that dysregulated circulating molecules may in part be responsible for a hypercoagulable state and vascular dysfunction in the T2DM sample. We propose further that a personalized approach could be of great value when planning treatment and tracking the patient health status after embarking on a treatment regimes, and that looking to novel inflammatory and vascular biomarkers might be crucial.
- ItemParkinson’s disease : a systemic inflammatory disease accompanied by bacterial inflammagens(Frontiers Media, 2019-08-27) Adams, Buin; Nunes, J. Massimo; Page, Martin J.; Roberts, Timothy; Carr, Jonathan; Nell, Theo A.; Kell, Douglas B.; Pretorius, EtheresiaParkinson’s disease (PD) is a well-known neurodegenerative disease with a strong association established with systemic inflammation. Recently, the role of the gingipain protease group from Porphyromonas gingivalis was implicated in Alzheimer’s disease and here we present evidence, using a fluorescent antibody to detect gingipain R1 (RgpA), of its presence in a PD population. To further elucidate the action of this gingipain, as well as the action of the lipopolysaccharide (LPS) from P. gingivalis, low concentrations of recombinant RgpA and LPS were added to purified fluorescent fibrinogen. We also substantiate previous findings regarding PD by emphasizing the presence of systemic inflammation via multiplex cytokine analysis, and demonstrate hypercoagulation using thromboelastography (TEG), confocal and electron microscopy. Biomarker analysis confirmed significantly increased levels of circulating proinflammatory cytokines. In our PD and control blood analysis, our results show increased hypercoagulation, the presence of amyloid formation in plasma, and profound ultrastructural changes to platelets. Our laboratory analysis of purified fibrinogen with added RgpA, and/or LPS, showed preliminary data with regards to the actions of the protease and the bacterial membrane inflammagen on plasma proteins, to better understand the nature of established PD.