Browsing by Author "Rejmanek, Marcel"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAlien plant invasions in tropical savanna ecosystems: patterns, processes and prospects(Springer, 2010-07-11) Foxcroft, Llewellyn C.; Richardson, David M.; Rejmanek, Marcel; Pysek, PetrBiological invasions affect virtually all ecosystems on earth, but the degree to which different regions and biomes are invaded, and the quality of information from different regions, varies greatly. A large body of literature exists on the invasion of savannas in the Neotropics and northern Australia where invasive plants, especially African grasses, have had major impacts. Less has been published on plant invasions in African savannas, except for those in South Africa. Negative impacts due to plant invasions in African savannas appear to be less severe than in other regions at present. As savannas cover about 60% of the continent, with tens of millions of people relying on the services they provide, it is timely to assess the current status of invasions as a threat to these ecosystems. We reviewed the literature, contrasting the African situation with that of Neotropical and Australian savannas. A number of drivers and explanatory factors of plant invasions in savannas have been described, mostly from the Neotropics and Australia. These include herbivore presence, residence time, intentional introductions for pasture improvements, fire regimes, the physiology of the introduced species, and anthropogenic disturbance. After comparing these drivers across the three regions, we suggest that the lower extent of alien plant invasions in African savannas is largely attributable to: (1) significantly lower rates of intentional plant introductions and widespread plantings (until recently); (2) the role of large mammalian herbivores in these ecosystems; (3) historical and biogeographical issues relating to the regions of origin of introduced species; and (4) the adaptation of African systems to fire. We discuss how changing conditions in the three regions are likely to affect plant invasions in the future.
- ItemDisentangling vegetation diversity from climate–energy and habitat heterogeneity for explaining animal geographic patterns(Wiley Open Access, 2016) Jimenez-Alfaro, Borja; Chytry, Milan; Mucina, Ladislav; Grace, James B.; Rejmanek, MarcelBroad-scale animal diversity patterns have been traditionally explained by hypotheses focused on climate–energy and habitat heterogeneity, without con- sidering the direct influence of vegetation structure and composition. However, integrating these factors when considering plant–animal correlates still poses a major challenge because plant communities are controlled by abiotic factors that may, at the same time, influence animal distributions. By testing whether the number and variation of plant community types in Europe explain coun- try-level diversity in six animal groups, we propose a conceptual framework in which vegetation diversity represents a bridge between abiotic factors and ani- mal diversity. We show that vegetation diversity explains variation in animal richness not accounted for by altitudinal range or potential evapotranspiration, being the best predictor for butterflies, beetles, and amphibians. Moreover, the dissimilarity of plant community types explains the highest proportion of varia- tion in animal assemblages across the studied regions, an effect that outper- forms the effect of climate and their shared contribution with pure spatial variation. Our results at the country level suggest that vegetation diversity, as estimated from broad-scale classifications of plant communities, may contribute to our understanding of animal richness and may be disentangled, at least to a degree, from climate–energy and abiotic habitat heterogeneity.
- ItemOpen minded and open access : introducing NeoBiota, a new peer-reviewed journal of biological invasions(Pensoft, 2011) Kuhn, Ingolf; Kowarik, Ingo; Kollmann, Johannes; Starfinger, Uwe; Bacher, Sven; Blackburn, Tim M.; Bustamante, Ramiro O.; Celesti-Grapow, Laura; Chytry, Milan; Colautti, Robert I.; Essl, Franz; Foxcroft, Llewellyn C.; Garcia-Berthou, Emili; Gollasch, Stephan; Hierro, Jose; Hufbauer, Ruth A.; Hulme, Philip E.; Jarosik, Vojtech; Jeschke, Jonathan M.; Karrer, Gerhard; Mack, Richard N.; Molofsky, Jane; Murray, Brad R.; Nentwig, Wolfgang; Osborne, Bruce; Pysek, Petr; Rabitsch, Wolfgang; Rejmanek, Marcel; Roques, Alain; Shaw, Richard; Sol, Daniel; Van Kleunen, Mark; Vila, Montserrat; Von der Lippe, Moritz; Wolfe, Lorne M.; Penev, LyubomirThe Editorial presents the focus, scope, policies, and the inaugural issue of NeoBiota, a new open access peer-reviewed journal of biological invasions. The new journal NeoBiota is a continuation of the former NEOBIOTA publication series. The journal will deal with all aspects of invasion biology and impose no restrictions on manuscript size neither on use of color. NeoBiota implies an XML-based editorial workflow and several cutting-edge innovations in publishing and dissemination, such as semantic markup of and enhancements to published texts, data publication, and extensive cross-linking within the journal and to external sources.
- ItemTrees and shrubs as invasive alien species - 2013 update of the global database(Wiley, 2013) Rejmanek, Marcel; Richardson, David M.The global database of invasive trees and shrubs (Richardson & Rejmánek, 2011; Diversity Distrib. 17, 788-809) has been updated, resulting in a total of 751 species (434 trees and 317 shrubs) from 90 families. Ten originally listed species were deleted (synonyms, inconclusive identification, etc.) and 139 additional invasive species (86 trees and 53 shrubs) are now included in the database. For many species, new records on their adventive distributions are added. The updated database also includes the native ranges for all listed species.