Browsing by Author "Ranganai, Edmore"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemAspects of model development using regression quantiles and elemental regressions(Stellenbosch : Stellenbosch University, 2007-03) Ranganai, Edmore; De Wet, Tertius; Van Vuuren, J.O.; Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.ENGLISH ABSTRACT: It is well known that ordinary least squares (OLS) procedures are sensitive to deviations from the classical Gaussian assumptions (outliers) as well as data aberrations in the design space. The two major data aberrations in the design space are collinearity and high leverage. Leverage points can also induce or hide collinearity in the design space. Such leverage points are referred to as collinearity influential points. As a consequence, over the years, many diagnostic tools to detect these anomalies as well as alternative procedures to counter them were developed. To counter deviations from the classical Gaussian assumptions many robust procedures have been proposed. One such class of procedures is the Koenker and Bassett (1978) Regressions Quantiles (RQs), which are natural extensions of order statistics, to the linear model. RQs can be found as solutions to linear programming problems (LPs). The basic optimal solutions to these LPs (which are RQs) correspond to elemental subset (ES) regressions, which consist of subsets of minimum size to estimate the necessary parameters of the model. On the one hand, some ESs correspond to RQs. On the other hand, in the literature it is shown that many OLS statistics (estimators) are related to ES regression statistics (estimators). Therefore there is an inherent relationship amongst the three sets of procedures. The relationship between the ES procedure and the RQ one, has been noted almost “casually” in the literature while the latter has been fairly widely explored. Using these existing relationships between the ES procedure and the OLS one as well as new ones, collinearity, leverage and outlier problems in the RQ scenario were investigated. Also, a lasso procedure was proposed as variable selection technique in the RQ scenario and some tentative results were given for it. These results are promising. Single case diagnostics were considered as well as their relationships to multiple case ones. In particular, multiple cases of the minimum size to estimate the necessary parameters of the model, were considered, corresponding to a RQ (ES). In this way regression diagnostics were developed for both ESs and RQs. The main problems that affect RQs adversely are collinearity and leverage due to the nature of the computational procedures and the fact that RQs’ influence functions are unbounded in the design space but bounded in the response variable. As a consequence of this, RQs have a high affinity for leverage points and a high exclusion rate of outliers. The influential picture exhibited in the presence of both leverage points and outliers is the net result of these two antagonistic forces. Although RQs are bounded in the response variable (and therefore fairly robust to outliers), outlier diagnostics were also considered in order to have a more holistic picture. The investigations used comprised analytic means as well as simulation. Furthermore, applications were made to artificial computer generated data sets as well as standard data sets from the literature. These revealed that the ES based statistics can be used to address problems arising in the RQ scenario to some degree of success. However, due to the interdependence between the different aspects, viz. the one between leverage and collinearity and the one between leverage and outliers, “solutions” are often dependent on the particular situation. In spite of this complexity, the research did produce some fairly general guidelines that can be fruitfully used in practice.