Browsing by Author "Pardey, Philip G."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemPixelating crop production : consequences of methodological choices(Public Library of Science, 2019) Joglekar, Alison K. B.; Wood-Sichra, Ulrike; Pardey, Philip G.Worldwide, crop production is intrinsically intertwined with biological, environmental and economic systems, all of which involve complex, inter-related and spatially-sensitive phenomena. Thus knowing the location of agriculture matters much for a host of reasons. There are several widely cited attempts to model the spatial pattern of crop production worldwide, not least by pixilating crop production statistics originally reported on an areal (administrative boundary) basis. However, these modeled measures have had little scrutiny regarding the robustness of their results to alternative data and modeling choices. Our research casts a critical eye over the nature and empirical plausibility of these types of datasets. To do so, we determine the sensitivity of the 2005 variant of the spatial production allocation model data series (SPAM2005) to eight methodological-cum-data choices in nine agriculturally-large and developmentally-variable countries: Brazil, China, Ethiopia, France, India, Indonesia, Nigeria, Turkey and the United States. We compare the original published estimates with those obtained from a series of robustness tests using various aggregations of the pixelized spatial production indicators (specifically, commodity-specific harvested area, production quantity and yield). Spatial similarity is empirically assessed using a pixel-level spatial similarity index (SSI). We find that the SPAM2005 estimates are most dependent on the degree of disaggregation of the underlying national and subnational production statistics. The results are also somewhat sensitive to the use of a simple spatial allocation method based solely on cropland proportions versus a cross-entropy allocation method, as well as the set of crops or crop aggregates being modeled, and are least sensitive to the inclusion of crude economic elements. Finally, we assess the spatial concordance between the SPAM2005 estimates of the area harvested of major crops in the United States and pixelated measures derived from remote-sensed data.
- ItemReshuffling the global R&D deck, 1980-2050(Public Library of Science, 2019) Dehmer, Steven P.; Pardey, Philip G.; Beddow, Jason M.; Chai, YuanBased on more recent science spending developments in countries such as China, Korea, India and Brazil, there is a growing sense that the world’s scientific deck of cards is in the midst of a major reshuffle. But it is not clear if this reordering is limited to just the top spenders, or, indeed, how these changes have been playing out over the longer term. The new, more comprehensive research and development (R&D) spending estimates presented and discussed here reveal that we are in the midst of a possibly game-changing, albeit partial and perhaps irregular, reshuffle of the global R&D deck. These changes have potentially profound domestic and international economic development implications over the medium to long term. Notably, the fortunes of many of the world’s poorer countries continue to look bleak. Using the evolving structure of past R&D spending to project forward, and absent marked changes in science policies and spending priorities, we foresee a continuing and substantial shift in the geography of R&D towards parts of Asia, along with a continuing large, and in many respects growing, gap between the world’s scientific haves and have-nots.
- ItemScientific selection: a century of increasing crop varietal diversity in US wheat(National Academy of Science, 2022-12-13) Chaia, Yuan; Pardey, Philip G.; Silverstein, Kevin A. T.A prevalent and persistent biodiversity concern is that modern cropping systems lead to an erosion in crop genetic diversity. Although certain trait uniformity provides advantages in crop management and marketing, farmers facing risks from change in climate, pests, and markets are also incentivized to adopt new varieties to address complex and spatially variable genetics, environment, and crop management interactions to optimize crop performance. In this study, we applied phylogenetically blind and phylogenetically informed diversity metrics to reveal significant increases in both the spatial and temporal diversity of the US wheat crop over the past century. Contrary to commonly held perceptions on the negative impact of modern cropping systems on crop genetic diversity, our results demonstrated a win-win outcome where the widespread uptake of scientifically selected varieties increased both crop production and crop diversity.