Browsing by Author "Page, Martin J."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemThe inflammatory effects of TNF-α and complement component 3 on coagulation(Nature Publishing Group, 2018) Page, Martin J.; Bester, Janette; Pretorius, EtheresiaTissue necrosis factor-α (TNF-α) and complement component 3 (C3) are two well-known pro-inflammatory molecules. When TNF-α is upregulated, it contributes to changes in coagulation and causes C3 induction. They both interact with receptors on platelets and erythrocytes (RBCs). Here, we look at the individual effects of C3 and TNF-α, by adding low levels of the molecules to whole blood and platelet poor plasma. We used thromboelastography, wide-field microscopy and scanning electron microscopy to study blood clot formation, as well as structural changes to RBCs and platelets. Clot formation was significantly different from the naïve sample for both the molecules. Furthermore, TNF-α exposure to whole blood resulted in platelet clumping and activation and we noted spontaneous plasma protein dense matted deposits. C3 exposure did not cause platelet aggregation, and only slight pseudopodia formation was noted. Therefore, although C3 presence has an important function to cause TNF-α release, it does not necessarily by itself cause platelet activation or RBC damage at these low concentrations. We conclude by suggesting that our laboratory results can be translated into clinical practice by incorporating C3 and TNF-α measurements into broad spectrum analysis assays, like multiplex technology, as a step closer to a patient-orientated, precision medicine approach.
- ItemLipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson's disease(Public Library of Science, 2018) Pretorius, Etheresia; Page, Martin J.; Mbotwe, Sthembile; Kell, Douglas B.The thrombin-induced polymerisation of fibrinogen to form fibrin is well established as a late stage of blood clotting. It is known that Parkinson’s Disease (PD) is accompanied by dysregulation in blood clotting, but it is less widely known as a coagulopathy. In recent work, we showed that the presence of tiny amounts of bacterial lipopolysaccharide (LPS) in healthy individuals could cause clots to adopt an amyloid form, and this could be observed via scanning electron microscopy (SEM) or via the fluorescence of thioflavin-T. This could be prevented by the prior addition of lipopolysaccharide-binding protein (LBP). We had also observed by SEM this unusual clotting in the blood of patients with Parkinson’s Disease. We hypothesised, and here show, that this too can be prevented by LBP in the context of PD. This adds further evidence implicating inflammatory microbial cell wall products as an accompaniment to the disease, and may be part of its aetiology. This may lead to novel treatment strategies in PD designed to target microbes and their products.
- ItemParkinson’s disease : a systemic inflammatory disease accompanied by bacterial inflammagens(Frontiers Media, 2019-08-27) Adams, Buin; Nunes, J. Massimo; Page, Martin J.; Roberts, Timothy; Carr, Jonathan; Nell, Theo A.; Kell, Douglas B.; Pretorius, EtheresiaParkinson’s disease (PD) is a well-known neurodegenerative disease with a strong association established with systemic inflammation. Recently, the role of the gingipain protease group from Porphyromonas gingivalis was implicated in Alzheimer’s disease and here we present evidence, using a fluorescent antibody to detect gingipain R1 (RgpA), of its presence in a PD population. To further elucidate the action of this gingipain, as well as the action of the lipopolysaccharide (LPS) from P. gingivalis, low concentrations of recombinant RgpA and LPS were added to purified fluorescent fibrinogen. We also substantiate previous findings regarding PD by emphasizing the presence of systemic inflammation via multiplex cytokine analysis, and demonstrate hypercoagulation using thromboelastography (TEG), confocal and electron microscopy. Biomarker analysis confirmed significantly increased levels of circulating proinflammatory cytokines. In our PD and control blood analysis, our results show increased hypercoagulation, the presence of amyloid formation in plasma, and profound ultrastructural changes to platelets. Our laboratory analysis of purified fibrinogen with added RgpA, and/or LPS, showed preliminary data with regards to the actions of the protease and the bacterial membrane inflammagen on plasma proteins, to better understand the nature of established PD.
- ItemThe potential of LPS-binding protein to reverse amyloid formation in plasma fibrin of individuals with Alzheimer-type dementia(Frontiers Media, 2018-08-22) Pretorius, Etheresia; Bester, Janette; Page, Martin J.; Kell, Douglas B.; Miklossy, JudithMany studies indicate that there is a (mainly dormant) microbial component in the progressive development of Alzheimer-type dementias (ADs); and that in the case of Gram-negative organisms, a chief culprit might be the shedding of the highly inflammagenic lipopolysaccharide (LPS) from their cell walls. We have recently shown that a highly sensitive assay for the presence of free LPS [added to platelet poor plasma (PPP)] lies in its ability (in healthy individuals) to induce blood to clot into an amyloid form. This may be observed in a SEM or in a confocal microscope when suitable amyloid stains (such as thioflavin T) are added. This process could be inhibited by human lipopolysaccharide-binding protein (LBP). In the current paper, we show using scanning electron microscopy and confocal microscopy with amyloid markers, that PPP taken from individuals with AD exhibits considerable amyloid structure when clotting is initiated with thrombin but without added LPS. Furthermore, we could show that this amyloid structure may be reversed by the addition of very small amounts of LBP. This provides further evidence for a role of microbes and their inflammagenic cell wall products and that these products may be involved in pathological clotting in individuals with AD.
- ItemSerum amyloid A binds to fibrin(ogen), promoting fibrin amyloid formation(Nature Research (part of Springer Nature), 2019-02-28) Page, Martin J.; Thomson, Greig J. A.; Nunes, J. Massimo; Engelbrecht, Anna-Mart; Nell, Theo A.; De Villiers, Willem J. S.; De Beer, Maria C.; Engelbrecht, Lize; Kell, Douglas B.; Pretorius, EtheresiaComplex associations exist between inflammation and thrombosis, with the inflammatory state tending to promote coagulation. Fibrinogen, an acute phase protein, has been shown to interact with the amyloidogenic ß-amyloid protein of Alzheimer’s disease. However, little is known about the association between fibrinogen and serum amyloid A (SAA), a highly fibrillogenic protein that is one of the most dramatically changing acute phase reactants in the circulation. To study the role of SAA in coagulation and thrombosis, in vitro experiments were performed where purified human SAA, in concentrations resembling a modest acute phase response, was added to platelet-poor plasma (PPP) and whole blood (WB), as well as purified and fluorescently labelled fibrinogen. Results from thromboelastography (TEG) suggest that SAA causes atypical coagulation with a fibrin(ogen)-mediated increase in coagulation, but a decreased platelet/fibrin(ogen) interaction. In WB scanning electron microscopy analysis, SAA mediated red blood cell (RBC) agglutination, platelet activation and clumping, but not platelet spreading. Following clot formation in PPP, the presence of SAA increased amyloid formation of fibrin(ogen) as determined both with auto-fluorescence and with fluorogenic amyloid markers, under confocal microcopy. SAA also binds to fibrinogen, as determined with a fluorescent-labelled SAA antibody and correlative light electron microscopy (CLEM). The data presented here indicate that SAA can affect coagulation by inducing amyloid formation in fibrin(ogen), as well as by propelling platelets to a more prothrombotic state. The discovery of these multiple and complex effects of SAA on coagulation invite further mechanistic analyses.
- ItemSubstantial fibrin amyloidogenesis in type 2 diabetes assessed using amyloid-selective fluorescent stains(Biomed Central, 2017) Pretorius, Etheresia; Page, Martin J.; Engelbrecht, Lize; Ellis, Graham C.; Kell, Douglas B.Background: We have previously shown that many chronic, inflammatory diseases are accompanied, and possibly partly caused or exacerbated, by various coagulopathies, manifested as anomalous clots in the form of ‘dense matted deposits’. More recently, we have shown that these clots can be amyloid in nature, and that the plasma of healthy controls can be induced to form such clots by the addition of tiny amounts of bacterial lipopolysaccharide or lipoteichoic acid. Type 2 diabetes (T2D) is also accompanied by raised levels of LPS. Methods: We use superresolution and confocal microscopies to investigate the amyloid nature of clots from healthy and T2D individuals. Results: We show here, with the established stain thioflavin T and the novel stains Amytracker™ 480 and 680, that the clotting of plasma from type 2 diabetics is also amyloid in nature, and that this may be prevented by the addition of suitable concentrations of LPS-binding protein. Conclusion; This implies strongly that there is indeed a microbial component to the development of type 2 diabetes, and suggests that LBP might be used as treatment for it and its sequelae.