Browsing by Author "Nyambuya, Tawanda M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCoenzyme Q10 supplementation improves adipokine levels and alleviates inflammation and lipid peroxidation in conditions of metabolic syndrome : a meta-analysis of randomized controlled trials(MDPI, 2020-05-04) Dludla, Phiwayinkosi V.; Orlando, Patrick; Silvestri, Sonia; Marcheggiani, Fabio; Cirilli, Ilenia; Nyambuya, Tawanda M.; Mxinwa, Vuyolwethu; Mokgalaboni, Kabelo; Nkambule, Bongani B.; Johnson, Rabia; Mazibuko-Mbeje, Sithandiwe E.; Muller, Christo J. F.; Louw, Johan; Tiano, LucaEvidence from randomized controlled trials (RCTs) suggests that coenzyme Q10 (CoQ10) can regulate adipokine levels to impact inflammation and oxidative stress in conditions of metabolic syndrome. Here, prominent electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible RCTs reporting on any correlation between adipokine levels and modulation of inflammation and oxidative stress in individuals with metabolic syndrome taking CoQ10. The risk of bias was assessed using the modified Black and Downs checklist, while the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to evaluate the quality of evidence. Results from the current meta-analysis, involving 318 participants, showed that CoQ10 supplementation in individuals with metabolic syndrome increased adiponectin levels when compared to those on placebo (SMD: 1.44 [95% CI: −0.13, 3.00]; I2 = 96%, p < 0.00001). Moreover, CoQ10 supplementation significantly lowered inflammation markers in individuals with metabolic syndrome in comparison to those on placebo (SMD: −0.31 [95% CI: −0.54, −0.08]; I2 = 51%, p = 0.07). Such benefits with CoQ10 supplementation were related to its ameliorative effects on lipid peroxidation by reducing malondialdehyde levels, concomitant to improving glucose control and liver function. The overall findings suggest that optimal regulation of adipokine function is crucial for the beneficial effects of CoQ10 in improving metabolic health.
- ItemPhysical exercise potentially targets epicardial adipose tissue to reduce cardiovascular disease risk in patients with metabolic diseases : oxidative stress and inflammation emerge as major therapeutic targets(MDPI, 2021-11-04) Nyawo, Thembeka A.; Pheiffer, Carmen; Mazibuko-Mbeje, Sithandiwe E; Mthembu, Sinenhlanhla X. H.; Nyambuya, Tawanda M.; Nkambule, Bongani B.; Sadie-Van Gijsen, Hanel; Strijdom, Hans; Tiano, Luca; Dludla, Phiwayinkosi V.ENGLISH ABSTRACT: Excess epicardial adiposity, within a state of obesity and metabolic syndrome, is emerging as an important risk factor for the development of cardiovascular diseases (CVDs). Accordingly, increased epicardial fat thickness (EFT) implicates the exacerbation of pathological mechanisms involving oxidative stress and inflammation within the heart, which may accelerate the development of CVDs. This explains increased interest in targeting EFT reduction to attenuate the detrimental effects of oxidative stress and inflammation within the setting of metabolic syndrome. Here, we critically discuss clinical and preclinical evidence on the impact of physical exercise on EFT in correlation with reduced CVD risk within a setting of metabolic disease. This review also brings a unique perspective on the implications of oxidative stress and inflammation as major pathological consequences that link increased EFT to accelerated CVD risk in conditions of metabolic disease.