Browsing by Author "Niklas, Karl J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemInfluence of the physical dimension of leaf size measures on the goodness of fit for Taylor's power law using 101 bamboo taxa(Elsevier, 2019) Shi, Peijian; Zhao, Lei; Ratkowsky, David A.; Niklas, Karl J.; Huang, Weiwei; Lin, Shuyan; Ding, Yulong; Hui, Cang; Li, Bai-LianENGLISH ABSTRACT: The mean and variance of ecological measures usually follow a power-law relationship, referred to as Taylor's power law (TPL). Leaves are important organs for photosynthesis, and leaf size is closely related to photosynthetic potential. Leaf size has different physical measures, such as leaf length, area, and fresh or dry weight. However, it has not been reported whether these leaf size measures follow TPL and whether the estimates of the TPL exponent reflect basic topological constraints. Considering that the variation of leaf size can affect the photosynthetic capacity of leaves and plant competitive abilities in communities, we examined the effects of different physical dimensions of leaf size (including leaf length, area, and fresh and dry weight) on the estimate of the scaling exponent and the goodness of fit of TPL for 101 bamboo species, varieties, forms, and cultivars, using 90-100 leaves for each type of plant. All leaf size measures follow TPL. However, the goodness of fit increases with the physical dimension of the leaf size measure (e.g., from 1D leaf length to 3D leaf weight). Interestingly, no significant differences in the estimates of the TPL exponent were detected among any of the physical dimensions (1D to 3D) because the 95% confidence intervals of the differences between any two groups of bootstrap replicates of the exponents of TPL obtained from different leaf size measures did not include 0. In other words, the TPL exponents of leaf size measures from the different physical dimensions could be deemed identical. We found that leaf dry weight provides the best fit of TPL and the most reliable estimate of the exponent among the four leaf size measures used in this study, perhaps because it is the best representative of the energy allocated to individual leaves.
- ItemLeaf bilateral symmetry and the scaling of the perimeter vs. the surface area in 15 vine species(2020-02-23) Shi, Peijian; Niinemets, Ulo; Hui, Cang; Niklas, Karl J.; Yu, Xiaojing; Holscher, DirkThe leaves of vines exhibit a high degree of variability in shape, from simple oval to highly dissected palmatifid leaves. However, little is known about the extent of leaf bilateral symmetry in vines, how leaf perimeter scales with leaf surface area, and how this relationship depends on leaf shape. We studied 15 species of vines and calculated (i) the areal ratio (AR) of both sides of the lamina per leaf, (ii) the standardized symmetry index (SI) to estimate the deviation from leaf bilateral symmetry, and (iii) the dissection index (DI) to measure leaf-shape complexity. In addition, we examined whether there is a scaling relationship between leaf perimeter and area for each species. A total of 14 out of 15 species had no significant differences in average ln(AR), and mean ln(AR) approximated zero, indicating that the areas of the two lamina sides tended to be equal. Nevertheless, SI values among the 15 species had significant differences. A statistically strong scaling relationship between leaf perimeter and area was observed for each species, and the scaling exponents of 12 out of 15 species fell in the range of 0.49-0.55. These data show that vines tend to generate a similar number of left- and right-skewed leaves, which might contribute to optimizing light interception. Weaker scaling relationships between leaf perimeter and area were associated with a greater DI and a greater variation in DI. Thus, DI provides a useful measure of the degree of the complexity of leaf outline.
- ItemLeaf shape influences the scaling of leaf dry mass vs. area : a test case using bamboos(Springer, 2020-01-21) Lin, Shuyan; Niklas, Karl J.; Wan, Yawen; Holscher, Dirk; Hui, Cang; Ding, Yulong; Shi, PeijianKey message A highly significant and positive scaling relationship between bamboo leaf dry mass and leaf surface area was observed; leaf shape (here, represented by the quotient of leaf width and length) had a significant influence on the scaling exponent of leaf dry mass vs. area. Context The scaling of leaf dry mass vs. leaf area is important for understanding how plants effectively intercept sunlight and invest carbon to do so. However, comparatively few, if any, studies have focused on whether leaf shape influences this scaling relationship. Aims In order to explore the effects of leaf shape on the scaling relationship between leaf dry mass and area, we examined 101 species, varieties, forms, and cultivars of bamboo growing in China and identified the relationship between the scaling exponent of leaf dry mass vs. area and leaf shape. This taxon was used because its leaf shape is conserved across species and, therefore, easily quantified. Methods Ten thousand and forty-five leaves from 101 bamboo species, varieties, forms, and cultivars growing in China were collected, and leaf dry mass, the quotient of leaf width and length, leaf area, and leaf dry mass per unit area were measured. The effect of leaf shape that can be easily quantified using the quotient of leaf width and length on the relevant and ecologically important scaling exponents was explored using this data base. Results Leaf dry mass and area differed significantly across bamboo genera, and even within the same genus. However, a statistically robust log-log linear and positive scaling relationship was observed for mass and area with a 1.115 scaling exponent (95% CI = 1.107, 1.122; r(2) = 0.907). Leaf shape had a significant influence on the numerical values of the scaling exponent of leaf dry mass vs. area. When the median of the quotient of leaf width and length was below 0.125, the numerical value of the scaling exponent increased with increasing quotient of leaf width and length. When the median of the quotient of leaf width and length was above 0.125, the scaling exponent numerically decreased toward 1.0. Conclusion We show, for the first time, that a significant relationship exists between leaf shape and the numerical values of scaling exponents governing the scaling of leaf dry mass with respect to leaf area. In addition, we show that with the quotient of leaf width and length increasing mean LMA increases, which implies a negative correlation between mean LMA and the estimated exponent of leaf dry mass vs. area for the grouped data based on the sorted quotients of leaf width and length.