Browsing by Author "Nalubega, Sharifa Ishaq"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemDevelopment of a Floating Car Data (FCD) model to evaluate traffic congestion : a case of Kampala, Uganda(Stellenbosch : Stellenbosch University, 2023-03) Nalubega, Sharifa Ishaq; Andersen, Simen Johann; Andersen, Simen Johann; Stellenbosch University. Faculty of Engineering. Dept. of Civil Engineering.ENGLISH ABSTRACT: Traffic congestion remains a stumbling block in an efficient and accessible road network. Attempts have been investigated to monitor congested areas and propose mitigation measures to alleviate the issue. However, transport planning models, such as the four-step traditional models, are expensive and complex. This research develops a novel floating car data (FCD) model similar to the traditional model but is more cost-effective and efficient for transport planning. Many African cities cannot afford complex planning models, but the need to improve road networks remains indisputable. Using FCD's cost-effective traffic data collection strategy, this research proposes a model designed to monitor and thus alleviate city traffic congestion. This study focuses on a novel FCD model for evaluating traffic congestion in developing African countries like Uganda. This research aims to contribute to alleviating traffic congestion in African cities by exploiting FCD. The methodology adopted to achieve this was developing a novel FCD model. This study utilized traffic speeds and travel times during peak and off-peak hours to determine the congestion intensities in different sections of Kampala. The speed reduction index (SRI) was used to classify the congestion levels into no, low, and high congestion areas. Delay rates were used to determine the varying delays in different city areas. Then, PTV VISUM software was utilized to develop a road network model and visualize the varying intensities of congestion. Then, two highly ranked zones in terms of delay rates were analysed to ascertain the causes. The causes were mainly high volumes of vehicles on the major arterials, non-operational traffic lights, and social and economic hubs in the adjacent areas of those zones. This study further proposed mitigation measures using the PTV VISSIM software by conducting a simulation analysis. When signal timings were altered, the simulation indicated a 42% reduction in vehicle delay on the major route at the intersection in zone 13. The research concluded that African cities could embrace technological advancement in traffic statistics and improve their cities.