Browsing by Author "Naidoo, Dhaneshree Bestinee"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCentella asiatica modulates cancer cachexia associated inflammatory cytokines and cell death in leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC’s)(BioMed Central, 2017-08-01) Naidoo, Dhaneshree Bestinee; Chuturgoon, Anil Amichund; Phulukdaree, Alisa; Guruprasad, Kanive Parashiva; Satyamoorthy, Kapaettu; Sewram, VikashBackground: Cancer cachexia is associated with increased pro-inflammatory cytokine levels. Centella asiatica (C. asiatica) possesses antioxidant, anti-inflammatory and anti-tumour potential. We investigated the modulation of antioxidants, cytokines and cell death by C. asiatica ethanolic leaf extract (CLE) in leukaemic THP-1 cells and normal peripheral blood mononuclear cells (PBMC’s). Methods: Cytotoxcity of CLE was determined at 24 and 72 h (h). Oxidant scavenging activity of CLE was evaluated using the 2, 2-diphenyl-1 picrylhydrazyl (DPPH) assay. Glutathione (GSH) levels, caspase (−8, −9, −3/7) activities and adenosine triphosphate (ATP) levels (Luminometry) were then assayed. The levels of tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10 were also assessed using enzyme-linked immunosorbant assay. Results: CLE decreased PBMC viability between 33.25–74.55% (24 h: 0.2–0.8 mg/ml CLE and 72 h: 0.4–0.8 mg/ml CLE) and THP-1 viability by 28.404% (72 h: 0.8 mg/ml CLE) (p < 0.0001). Oxidant scavenging activity was increased by CLE (0.05–0.8 mg/ml) (p < 0.0001). PBMC TNF-α and IL-10 levels were decreased by CLE (0.05–0.8 mg/ml) (p < 0.0001). However, PBMC IL-6 and IL-1β concentrations were increased at 0.05–0.2 mg/ml CLE but decreased at 0.4 mg/ml CLE (p < 0.0001). In THP-1 cells, CLE (0.2–0.8 mg/ml) decreased IL-1β and IL-6 whereas increased IL-10 levels (p < 0.0001). In both cell lines, CLE (0.05–0.2 mg/ml, 24 and 72 h) increased GSH concentrations (p < 0.0001). At 24 h, caspase (−9, −3/7) activities was increased by CLE (0.05–0.8 mg/ml) in PBMC’s whereas decreased by CLE (0.2–0.4 mg/ml) in THP-1 cells (p < 0.0001). At 72 h, CLE (0.05–0.8 mg/ml) decreased caspase (−9, −3/7) activities and ATP levels in both cell lines (p < 0.0001). Conclusion: In PBMC’s and THP-1 cells, CLE proved to effectively modulate antioxidant activity, inflammatory cytokines and cell death. In THP-1 cells, CLE decreased pro-inflammatory cytokine levels whereas it increased anti-inflammatory cytokine levels which may alleviate cancer cachexia.
- ItemWithania somnifera modulates cancer cachexia associated inflammatory cytokines and cell death in leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC’s)(BioMed Central, 2018-04-10) Naidoo, Dhaneshree Bestinee; Chuturgoon, Anil Amichund; Phulukdaree, Alisa; Guruprasad, Kanive Parashiva; Satyamoorthy, Kapaettu; Sewram, VikashBackground: Cancer and inflammation are associated with cachexia. Withania somnifera (W. somnifera) possesses antioxidant and anti-inflammatory potential. We investigated the potential of an aqueous extract of the root of W. somnifera (WRE) to modulate cytokines, antioxidants and apoptosis in leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC’s). Methods: Cytotoxcity of WRE was determined at 24 and 72 h (h). Oxidant scavenging activity of WRE was evaluated (2, 2-diphenyl-1 picrylhydrazyl assay). Glutathione (GSH) levels, caspase (− 8, − 9, − 3/7) activities and adenosine triphosphate (ATP) levels (Luminometry) were thereafter assayed. Tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10 levels were also assessed using enzyme-linked immunosorbant assay. Results: At 24 h, WRE (0.2–0.4 mg/ml) decreased PBMC viability between 20 and 25%, whereas it increased THP-1 viability between 15 and 23% (p < 0.001). At 72 h, WRE increased PBMC viability by 27–39% (0.05, 0.4 mg/ml WRE) whereas decreased THP-1 viability between 9 and 16% (0.05–0.4 mg/ml WRE) (p < 0.001). Oxidant scavenging activity was increased by WRE (0.05–0.4 mg/ml, p < 0.0001). PBMC TNF-α and IL-10 levels were decreased by 0.2–0.4 mg/ml WRE, whereas IL-1β levels were increased by 0.05–0.4 mg/ml WRE (p < 0.0001). In THP-1 cells, WRE (0.05–0.4 mg/ml) decreased TNF-α, IL-1β and IL-6 levels (p < 0.0001). At 24 h, GSH levels were decreased in PBMC’s, whilst increased in THP-1 cells by 0.2–0.4 mg/ml WRE (p < 0.0001). At 72 h, WRE (0.1–0.4 mg/ml) decreased GSH levels in both cell lines (p < 0.0001). At 24 h, WRE (0.2–0.4 mg/ml) increased PBMC caspase (-8, -3/7) activities whereas WRE (0.05, 0.1, 0.4 mg/ml) increased THP-1 caspase (-9, -3/7) activities (p < 0.0001). At 72 h, PBMC caspase (-8, -9, -3/7) activities were increased at 0.05–0.1 mg/ml WRE (p < 0.0001). In THP-1 cells, caspase (-8, -9, -3/7) activities and ATP levels were increased by 0.1–0.2 mg/ml WRE, whereas decreased by 0.05 and 0.4 mg/ml WRE (72 h, p < 0.0001). Conclusion: In PBMC’s and THP-1 cells,WRE proved to effectively modulate antioxidant activity, inflammatory cytokines and cell death. In THP-1 cells, WRE decreased pro-inflammatory cytokine levels, which may alleviate cancer cachexia and excessive leukaemic cell growth.