Browsing by Author "Mulder, Nicola J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDetermining ancestry proportions in complex admixture scenarios in South Africa using a novel proxy ancestry selection method(PLoS, 2013-09) Chimusa, Emile R.; Daya, Michelle; Möller, Marlo; Ramesar, Raj; Henn, Brenna M.; Van Helden, Paul D.; Mulder, Nicola J.; Hoal, Eileen G.Admixed populations can make an important contribution to the discovery of disease susceptibility genes if the parental populations exhibit substantial variation in susceptibility. Admixture mapping has been used successfully, but is not designed to cope with populations that have more than two or three ancestral populations. The inference of admixture proportions and local ancestry and the imputation of missing genotypes in admixed populations are crucial in both understanding variation in disease and identifying novel disease loci. These inferences make use of reference populations, and accuracy depends on the choice of ancestral populations. Using an insufficient or inaccurate ancestral panel can result in erroneously inferred ancestry and affect the detection power of GWAS and meta-analysis when using imputation. Current algorithms are inadequate for multi-way admixed populations. To address these challenges we developed PROXYANC, an approach to select the best proxy ancestral populations. From the simulation of a multi-way admixed population we demonstrate the capability and accuracy of PROXYANC and illustrate the importance of the choice of ancestry in both estimating admixture proportions and imputing missing genotypes. We applied this approach to a complex, uniquely admixed South African population. Using genome-wide SNP data from over 764 individuals, we accurately estimate the genetic contributions from the best ancestral populations: isiXhosa (33%±0:226), {Khomani SAN (31%±0:195), European (16%±0:118), Indian (13%±0:094), and Chinese (7%±0:0488). We also demonstrate that the ancestral allele frequency differences correlate with increased linkage disequilibrium in the South African population, which originates from admixture events rather than population bottlenecks.
- ItemThe development of computational biology in South Africa : successes achieved and lessons learnt(PLoS, 2016) Mulder, Nicola J.; Christoffels, Alan; De Oliveira, Tulio; Gamieldien, Junaid; Hazelhurst, Scott; Joubert, Fourie; Kumuthini, Judit; Pillay, Che S.; Snoep, Jacky L.; Bishop, Ozlem Tastan; Tiffin, NickiBioinformatics is now a critical skill in many research and commercial environments as biological data are increasing in both size and complexity. South African researchers recognized this need in the mid-1990s and responded by working with the government as well as international bodies to develop initiatives to build bioinformatics capacity in the country. Significant injections of support from these bodies provided a springboard for the establishment of computational biology units at multiple universities throughout the country, which took on teaching, basic research and support roles. Several challenges were encountered, for example with unreliability of funding, lack of skills, and lack of infrastructure. However, the bioinformatics community worked together to overcome these, and South Africa is now arguably the leading country in bioinformatics on the African continent. Here we discuss how the discipline developed in the country, highlighting the challenges, successes, and lessons learnt.