Browsing by Author "Mpongoshe, Vuyiseka"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGene expression changes in macrophages infected with pathogenic M. tuberculosis and non-pathogenic M. smegmatis and M. bovis BCG(Stellenbosch : Stellenbosch University, 2014-04) Mpongoshe, Vuyiseka; Baker, Bienyameen; Wiid, Ian; Stellenbosch University. Faculty of Medicine and Health Sciences. Dept. of Biomedical Sciences, Molecular Biology and Human Genetics.ENGLISH ABSTRACT: The current anti-TB drugs have had success in decreasing the number of deaths caused by TB, however, this success is limited by the emergence of drug resistant TB strains. Therefore, a novel TB therapy that limits the development of resistance has become necessary in an attempt to effectively control TB. The anti-TB drugs directly target mycobacterial enzymes, and potentiate the development of this resistance, and have therefore provided the rationale for this study. The aim was therefore to identify host macrophage genes that affect M. tb intracellular survival. The proposed alternative anti-TB therapy potentially involves the application of RNA interference (RNAi) and RNA activation (RNAa) biological processes that will target host genes, thereby inducing an indirect bactericidal effect. We hypothesized that macrophage genes that are differentially expressed by pathogenic and non-pathogenic mycobacterial species may be important in the regulation of M. tb intracellular survival. The lipid-rich mycobacterial cell wall is implicated in the excessive clumping of the mycobacterial cells in liquid culture. In order to minimize this, Tween 80 detergent was supplemented (mycobacteriaT). However, due to substantial evidence emphasising the detrimental effects of Tween 80 on the mycobacterial cell wall, mycobacteria were also cultured without Tween 80 (mycobacteriaNT), in order to investigate if the perturbed mycobacterial cell wall induced by Tween 80 affects the transcriptional response of macrophages. We endeavoured to develop a new method to culture mycobacteria without Tween 80 that will still generate single cells. We further hypothesized that the macrophage gene expression profile induced by mycobateriaNT differs from the response induced by mycobacteriaT. Differentiated THP-1 (dTHP-1) cells were infected with pathogenic and non-pathogenic mycobacteria (for 3 h, 24 h and 48 h with M. tb and M. bovis BCG, and 3 h and 8 h with M. smegmatis) cultured in the presence or absence of Tween 80. The expression of 12 macrophage genes, selected based on their involvement in the phagocytic pathway and autophagy, as well as their general involvement in the immune response, was determined by qRT-PCR and further analysed on the REST programme. The expression of each target gene was normalised relative to the expression of the reference gene (Beta actin). We observed that out of the 12 genes, TLR7 and VAMP7 were consistently downregulated in dTHP-1 cells infected with M. tbNT and upregulated in dTHP-1 cells infected with M. smegmatisNT. Their response to M. bovis BCG was inconsistent and not significantly different, and therefore could not be interpreted. Furthermore, CCL1 was upregulated by all the mycobacterial species. However, its expression was more pronounced in response to mycobacteriaNT, when compared to mycobacteriaT. Differential gene expression of TLR7 and VAMP7 in response to pathogenic and non-pathogenic mycobacteriaNT suggests that these 2 genes may be potential targets for RNAa-based anti-TB therapy, even though we could not conclude whether their response was specific to macrophages. In addition, the observed difference in the expression of CCL1 induced by mycobacteriaNT, compared to mycobacteriaT suggests that the perturbation caused by Tween 80 on the mycobacterial cell wall most likely affected the response of macrophages to infection with mycobacteria. Furthermore, this study has demonstrated a feasible method by filtration to generate single cells from mycobacteriaNT, which should be considered for future mycobacterial infection studies.
- ItemThe host response to a clinical MDR mycobacterial strain cultured in a detergent-free environment : a global transcriptomics approach(Public Library of Science, 2016) Leisching, Gina; Pietersen, Ray-Dean; Mpongoshe, Vuyiseka; Van Heerden, Carel; Van Helden, Paul; Wiid, Ian; Baker, BienyameenDuring Mycobacterium tuberculosis (M.tb) infection, the initial interactions between the pathogen and the host cell determines internalization and innate immune response events. It is established that detergents such as Tween alter the mycobacterial cell wall and solubilize various lipids and proteins. The implication of this is significant since induced changes on the cell wall affect macrophage uptake and the immune response to M.tb. Importantly, during transmission between hosts, aerosolized M.tb enters the host in its native form, i.e. in a detergent-free environment, thus in vitro and in vivo studies should mimic this as closely as possible. To this end, we have optimized a procedure for growing and processing detergent-free M.tb and assessed the response of murine macrophages (BMDM) infected with multi drug-resistant M.tb (R179 Beijing 220 clinical isolate) using RNAseq. We compared the effects of the host response to M.tb cultured under standard laboratory conditions (Tween 80 containing medium -R179T), or in detergent-free medium (R179NT). RNAseq comparisons reveal 2651 differentially expressed genes in BMDMs infected with R179T M.tb vs. BMDMs infected with R179NT M.tb. A range of differentially expressed genes involved in BMDM receptor interaction with M.tb (Mrc1, Ifngr1, Tlr9, Fpr1 and Itgax) and pro-inflammatory cytokines/chemokines (Il6, Il1b, Tnf, Ccl5 and Cxcl14) were selected for analysis through qPCR. BMDMs infected with R179NT stimulate a robust inflammatory response. Interestingly, R179NT M.tb induce transcription of Fpr1, a receptor which detects bacterial formyl peptides and initiates a myriad of immune responses. Additionally we show that the host components Cxcl14, with an unknown role in M.tb infection, and Tlr9, an emerging role player, are only stimulated by infection with R179NT M.tb. Taken together, our results suggest that the host response differs significantly in response to Tween 80 cultured M.tb and should therefore not be used in infection experiments.