Browsing by Author "Mostert, Talitha Tanya"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemInvestigating the secretome of non-Saccharomyces yeast in model wine(Stellenbosch : Stellenbosch University, 2013-03) Mostert, Talitha Tanya; Divol, Benoit; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Proteins from various sources, including grape berry cells, yeast, bacteria and fining agents e.g. albumin and casein, have previously been identified in wine. These proteins play various critical roles in the functioning and survival of the organisms that produced them but also exhibit oenological properties, once secreted in the juice/wine. Some of them can indeed be beneficial to winemaking, by releasing aroma compounds from grape-derived precursors, or detrimental to wine quality, by causing protein haze. Yeasts contribute significantly to the protein pool during and after alcoholic fermentation. However, while the extracellular proteins of Saccharomyces cerevisiae, the main wine yeast species, have been characterised, those of non-Saccharomyces yeasts remain largely unknown, especially under winemaking conditions. Although specific extracellular enzymes released by non-Saccharomyces yeasts have been the focus of many studies in recent years, the targeted approaches used have restricted our knowledge to these specific enzymes and excluded the other secreted proteins. A more comprehensive insight into entire secretomes could improve our understanding of how yeasts survive in wine and interact with other species in mixed culture fermentations. This study aims to characterise the exo-proteome of Saccharomyces and selected non-Saccharomyces yeasts in pure and mixed cultures in a wine-like medium. Fermentation kinetics were monitored and the extracellular proteins isolated at the end of fermentation. M. pulcherrima hardly fermented whereas L. thermotolerans fermented slowly but steadily. As expected S. cerevisiae completed the fermentation rapidly. In sequential fermentations, the kinetics resembled those of the non-Saccharomyces yeasts for a period before switching to that of S. cerevisiae. This period varied from 4 to 15 days for M. pulcherrima and L. thermotolerans respectively. Visual observations of the protein content of the medium at the end of fermentation using 1D and 2D SDS-PAGE gels as well as identification of these proteins using mass fingerprinting revealed the large variety of proteins secreted and the influence of yeast interactions on each other’s secretome. The fermentation kinetics observed could partially be explained by the extent of the contribution of the different yeast to the protein content. Proteins secreted by non-Saccharomyces yeasts lowered the potential of wine to form protein haze, with both M. pulcherrima and L. thermotolerans in pure and mixed culture fermentations showing lower haze formation than S. cerevisiae. As far as we know, this is the first report on the secretome of non-Saccharomyces under winemaking condition and the influence non-Saccharomyces proteins have on the protein haze potential of wine, providing the basis for future investigations.