Browsing by Author "Merker, Matthias"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA landscape of genomic alterations at the root of a near-untreatable tuberculosis epidemic(BMC (part of Springer Nature), 2020-02-04) Klopper, Marisa; Heupink, Tim Hermanus; Hill-Cawthorne, Grant; Streicher, Elizabeth M.; Dippenaar, Anzaan; De Vos, Margaretha; Abdallah, Abdallah Musa; Limberis, Jason; Merker, Matthias; Burns, Scott; Niemann, Stefan; Dheda, Keertan; Posey, James; Pain, Arnab; Warren, Robin MarkBackground: Atypical Beijing genotype Mycobacterium tuberculosis strains are widespread in South Africa and have acquired resistance to up to 13 drugs on multiple occasions. It is puzzling that these strains have retained fitness and transmissibility despite the potential fitness cost associated with drug resistance mutations. Methods: We conducted Illumina sequencing of 211 Beijing genotype M. tuberculosis isolates to facilitate the detection of genomic features that may promote acquisition of drug resistance and restore fitness in highly resistant atypical Beijing forms. Phylogenetic and comparative genomic analysis was done to determine changes that are unique to the resistant strains that also transmit well. Minimum inhibitory concentration (MIC) determination for streptomycin and bedaquiline was done for a limited number of isolates to demonstrate a difference in MIC between isolates with and without certain variants. Results: Phylogenetic analysis confirmed that two clades of atypical Beijing strains have independently developed resistance to virtually all the potent drugs included in standard (pre-bedaquiline) drug-resistant TB treatment regimens. We show that undetected drug resistance in a progenitor strain was likely instrumental in this resistance acquisition. In this cohort, ethionamide (ethA A381P) resistance would be missed in first-line drug-susceptible isolates, and streptomycin (gidB L79S) resistance may be missed due to an MIC close to the critical concentration. Subsequent inadequate treatment historically led to amplification of resistance and facilitated spread of the strains. Bedaquiline resistance was found in a small number of isolates, despite lack of exposure to the drug. The highly resistant clades also carry inhA promoter mutations, which arose after ethA and katG mutations. In these isolates, inhA promoter mutations do not alter drug resistance, suggesting a possible alternative role. Conclusion: The presence of the ethA mutation in otherwise susceptible isolates from ethionamide-naïve patients demonstrates that known exposure is not an adequate indicator of drug susceptibility. Similarly, it is demonstrated that bedaquiline resistance can occur without exposure to the drug. Inappropriate treatment regimens, due to missed resistance, leads to amplification of resistance, and transmission. We put these results into the context of current WHO treatment regimens, underscoring the risks of treatment without knowledge of the full drug resistance profile.
- ItemMDR M. tuberculosis outbreak clone in Eswatini missed by Xpert has elevated bedaquiline resistance dated to the pre-treatment era(BMC, 2020-11-25) Beckert, Patrick; Sanchez-Padilla, Elisabeth; Merker, Matthias; Dreyer, Viola; Kohl, Thomas A.; Utpatel, Christian; Koser, Claudio U.; Barilar, Ivan; Ismail, Nazir; Omar, Shaheed V.; Klopper, Marisa; Warren, Robin M.; Hoffmann, Harald; Maphalala, Gugu; Ardizzoni, Elisa; De Jong, Bouke C.; Kerschberger, Bernhard; Schramm, Birgit; Andres, Sonke; Kranzer, Katharina; Maurer, Florian P.; Bonnet, Maryline; Niemann, StefanBackground: Multidrug-resistant (MDR) Mycobacterium tuberculosis complex strains not detected by commercial molecular drug susceptibility testing (mDST) assays due to the RpoB I491F resistance mutation are threatening the control of MDR tuberculosis (MDR-TB) in Eswatini. Methods: We investigate the evolution and spread of MDR strains in Eswatini with a focus on bedaquiline (BDQ) and clofazimine (CFZ) resistance using whole-genome sequencing in two collections ((1) national drug resistance survey, 2009–2010; (2) MDR strains from the Nhlangano region, 2014–2017). Results: MDR strains in collection 1 had a high cluster rate (95%, 117/123 MDR strains) with 55% grouped into the two largest clusters (gCL3, n = 28; gCL10, n = 40). All gCL10 isolates, which likely emerged around 1993 (95% highest posterior density 1987–1998), carried the mutation RpoB I491F that is missed by commercial mDST assays. In addition, 21 (53%) gCL10 isolates shared a Rv0678 M146T mutation that correlated with elevated minimum inhibitory concentrations (MICs) to BDQ and CFZ compared to wild type isolates. gCL10 isolates with the Rv0678 M146T mutation were also detected in collection 2. Conclusion: The high clustering rate suggests that transmission has been driving the MDR-TB epidemic in Eswatini for three decades. The presence of MDR strains in Eswatini that are not detected by commercial mDST assays and have elevated MICs to BDQ and CFZ potentially jeopardizes the successful implementation of new MDR-TB treatment guidelines. Measures to limit the spread of these outbreak isolates need to be implemented urgently.