Browsing by Author "McKinnon, Alexander"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe impact of amino acids on growth performance and major volatile compound formation by industrial wine yeast(Stellenbosch : Stellenbosch University, 2013-12) McKinnon, Alexander; Bauer, Florian; Smit, Anita; Stellenbosch University. Faculty of AgriSciences. Dept. of Institute for Wine Biotechnology.ENGLISH ABSTRACT: Nitrogen composition of grape must is highly variable and impacts on the health of the fermenting yeast population as well as the formation of aroma and flavour compounds in wine. Insufficient yeast assimilable nitrogen (YAN), mostly consisting of amino acids and ammonium, can lead to stuck or sluggish fermentations as well as the formation of undesirable compounds such as H2S. Furthermore, it is well established that the total concentration of YAN and the specific amino acid composition have a significant impact on the final aroma and flavour of wines. However, the impact of individual amino acids and of specific amino acid compositions on fermentation kinetics and on the production of aroma and flavour impact compounds under winemaking conditions is not well understood. The first goal of this study was to evaluate the effect of single amino acids on growth kinetics and major volatile production of two industrial wine yeast strains under conditions resembling wine fermentations. To facilitate these fermentation conditions while also allowing for easy reproducibility and manipulation of the initial components, a synthetic grape media was utilized. Biomass formation, exponential growth rate, lag phase, and fermentation duration were utilized to evaluate the efficiency of single amino acids. The data show that previously observed trends in laboratory strains mostly apply to these conditions and strains. In general, the efficiency of amino acids to be used as nitrogen sources and the production of major volatiles due to their presence followed the same patterns for both industrial yeast strains. However, the production of the secondary metabolites butanol, propanol, acetic acid, and ethyl acetate were found to be produced in different final concentrations dependent upon the yeast strain. The branched-chained and aromatic amino acids (BCAAs) treatments were observed to have the most dramatic effects on major volatile production. Investigating the relationships between the initial concentration of the BCAAs and the final concentrations of major volatile compounds, it was found that the production of fusel alcohols and fusel acids due to the degradation of BCAAs by S. cerevisiae could be predicted from the initial concentration of BCAAs. While under simple nitrogen conditions the production of several other secondary metabolites such as butanol, propionic acid, valeric acid, decanoic acid and 2-phenylethyl acetate were found to be correlated to the initial concentration of BCAAs in the media. Future studies should focus on the validation of these trends in aroma production in real grape musts under various fermentation temperatures for a number of industrial wine yeast strains.
- ItemThe impact of single amino acids on growth and volatile aroma production by Saccharomyces cerevisiae strains(Frontiers Media, 2017) Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, Antonio C.; Bauer, Florian; Lanciotti, RosalbaNitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.