Browsing by Author "Maeder, A."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemPre-frailty factors in community-dwelling 40–75 year olds : opportunities for successful ageing(BMC (part of Springer Nature), 2020-03-06) Gordon, S. J.; Baker, N.; Kidd, M.; Maeder, A.; Grimmer, K. A.Background: There is little known about pre-frailty attributes or when changes which contribute to frailty might be detectable and amenable to change. This study explores pre-frailty and frailty in independent community-dwelling adults aged 40–75 years. Methods: Participants were recruited through local council networks, a national bank and one university in Adelaide, Australia. Fried frailty phenotype scores were calculated from measures of unintentional weight loss, exhaustion, low physical activity levels, poor hand grip strength and slow walking speed. Participants were identified as not frail (no phenotypes), prefrail (one or two phenotypes) or frail (three or more phenotypes). Factor analysis was applied to binary forms of 25 published frailty measures Differences were tested in mean factor scores between the three Fried frailty phenotypes and ROC curves estimated predictive capacity of factors. Results: Of 656 participants (67% female; mean age 59.9 years, SD 10.6) 59.2% were classified as not frail, 39.0% pre-frail and 1.8% frail. There were no gender or age differences. Seven frailty factors were identified, incorporating all 25 frailty measures. Factors 1 and 7 significantly predicted progression from not-frail to pre-frail (Factor 1 AUC 0.64 (95%CI 0.60–0.68, combined dynamic trunk stability and lower limb functional strength, balance, foot sensation, hearing, lean muscle mass and low BMI; Factor 7 AUC 0.55 (95%CI 0.52–0.59) comprising continence and nutrition. Factors 3 and 4 significantly predicted progression from pre-frail to frail (Factor 3 AUC 0.65 (95% CI 0.59–0.70)), combining living alone, sleep quality, depression and anxiety, and lung function; Factor 4 AUC 0.60 (95%CI 0.54–0.66) comprising perceived exertion on exercise, and falls history. Conclusions: This research identified pre-frailty and frailty states in people aged in their 40s and 50s. Pre-frailty in body systems performance can be detected by a range of mutable measures, and interventions to prevent progression to frailty could be commenced fromthe fourth decade of life.