Browsing by Author "Lord, Jennifer S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemClimate change and African trypanosomiasis vector populations in Zimbabwe’s Zambezi Valley : a mathematical modelling study(Public Library of Science, 2018) Lord, Jennifer S.; Hargrove, John W.; Torr, Stephen J.; Vale, Glyn A.Background: Quantifying the effects of climate change on the entomological and epidemiological components of vector-borne diseases is an essential part of climate change research, but evidence for such effects remains scant, and predictions rely largely on extrapolation of statistical correlations. We aimed to develop a mechanistic model to test whether recent increases in temperature in the Mana Pools National Park of the Zambezi Valley of Zimbabwe could account for the simultaneous decline of tsetse flies, the vectors of human and animal trypanosomiasis. Methods and findings: The model we developed incorporates the effects of temperature on mortality, larviposition, and emergence rates and is fitted to a 27-year time series of tsetse caught from cattle. These catches declined from an average of c. 50 flies per animal per afternoon in 1990 to c. 0.1 in 2017. Since 1975, mean daily temperatures have risen by c. 0.9˚C and temperatures in the hottest month of November by c. 2˚C. Although our model provided a good fit to the data, it cannot predict whether or when extinction will occur. Conclusions: The model suggests that the increase in temperature may explain the observed collapse in tsetse abundance and provides a first step in linking temperature to trypanosomiasis risk. If the effect at Mana Pools extends across the whole of the Zambezi Valley, then transmission of trypanosomes is likely to have been greatly reduced in this warm low-lying region. Conversely, rising temperatures may have made some higher, cooler, parts of Zimbabwe more suitable for tsetse and led to the emergence of new disease foci.
- ItemHost-seeking efficiency can explain population dynamics of the tsetse fly Glossina morsitans morsitans in response to host density decline(Public Library of Science, 2017) Lord, Jennifer S.; Mthombothi, Zinhle; Lagat, Vitalis K.; Atuhaire, Fatumah; Hargrove, John W.Females of all blood-feeding arthropod vectors must find and feed on a host in order to produce offspring. For tsetse—vectors of the trypanosomes that cause human and animal African trypanosomiasis—the problem is more extreme, since both sexes feed solely on blood. Host location is thus essential both for survival and reproduction. Host population density should therefore be an important driver of population dynamics for haematophagous insects, and particularly for tsetse, but the role of host density is poorly understood. We investigate the issue using data on changes in numbers of tsetse (Glossina morsitans morsitans Westwood) caught during a host elimination experiment in Zimbabwe in the 1960s. During the experiment, numbers of flies caught declined by 95%. We aimed to assess whether models including starvation-dependent mortality could explain observed changes in tsetse numbers as host density declined. An ordinary differential equation model, including starvation-dependent mortality, captured the initial dynamics of the observed tsetse population. However, whereas small numbers of tsetse were caught throughout the host elimination exercise, the modelled population went extinct. Results of a spatially explicit agent-based model suggest that this discrepancy could be explained by immigration of tsetse into the experimental plot. Variation in host density, as a result of natural and anthropogenic factors, may influence tsetse population dynamics in space and time. This has implications for Trypanosoma brucei rhodesiense transmission. Increased tsetse mortality as a consequence of low host density may decrease trypanosome transmission, but hungrier flies may be more inclined to bite humans, thereby increasing the risk of transmission to humans. Our model provides a way of exploring the role of host density on tsetse population dynamics and could be incorporated into models of trypanosome transmission dynamics to better understand how spatio-temporal variation in host density impacts trypanosome prevalence in mammalian hosts.