Browsing by Author "Laker, Mareli S. (Mareli Susan)"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe effect of atmospheric and soil conditions on the grapevine water status(Stellenbosch : University of Stellenbosch, 2004-12) Laker, Mareli S. (Mareli Susan); Archer, E.; Myburgh, P. A.; University of Stellenbosch. Faculty of Agrisciences. Dept. of Viticulture and Oenology.ENGLISH ABSTRACT: Due to the extraordinary drought resistance of the grapevine, viticulture without irrigation in the winter rainfall coastal areas of South Africa is a feasible and commonly used practice. Wine quality is largely determined by the quality of the grapes from which it is made. Grapevine physiology is affected both directly and indirectly by water stress, which may vary according to soil type and prevailing atmospheric conditions. The water status of the grapevine can affect grape composition profoundly, either directly or indirectly, in either a positive or negative way, depending on the degree as well as the duration of water stress. There are three important factors involved in the development of water stress, namely the transpiration rate, the rate of water movement from the soil to the roots, and the relationship of soil water potential to leaf water potential. All three these factors are affected by atmospheric and/or soil conditions. In warm winelands such as South Africa (Western Cape), with a mediterranean climate which is characterised by a hot, dry summer period, the most important characteristic of soil is its ability to supply sufficient water to the grapevine during the entire growing season. Leaf water potential (Ψl) has gained wide acceptance as a fundamental measure of grapevine water status, and has been widely applied in viticultural research. Shortly before dawn, Ψl approaches equilibrium with soil water potential and reaches a maximum daily value. The study formed an integral part of a comprehensive, multi-disciplinary research project (ARC Infruitec-Nietvoorbij Project No. WW13/01) on the effect of soil and climate on wine quality, which commenced in 1993 and will be completed in 2004. This study was conducted during the 2002/03 growing season in two Sauvignon blanc vineyards situated at Helshoogte and Papegaaiberg, both in the Stellenbosch district, approximately nine kilometres apart. Two experiment plots, representing contrasting soil types in terms of soil water regime, were selected in each vineyard. At Helshoogte the two soils represented the Tukulu and Hutton forms, and the soils at Papegaaiberg were of the Avalon and Tukulu forms. The aim of this study was to determine the effect of atmospheric conditions and soil water status on the level of water stress in the grapevines for each soil at each locality, as well as the effect of grapevine water stress on yield and wine quality. This was done by determining and comparing the soil water status, soil water holding capacity of the soils and the evapotranspiration of the grapevines on the two different soils, at each of the two localities differing in mesoclimate and topography. The atmospheric conditions at the two localities during the 2002/03 season were also determined and compared to the long-term average atmospheric conditions, and the level of water stress of grapevines on each soil at each locality was measured. During the 2002/03 growing season, atmospheric conditions were relatively warm and dry in comparison to the long-term averages of previous seasons. These conditions accentuated the effects of certain soil properties that may not come forward during wetter, normal seasons. The usually wet Tukulu soil at Helshoogte was drier than expected during the 2002/03 season compared to the Hutton soil. Due to more vigorous growth on the Tukulu soil, grapevines extracted more soil water early in the season, leading to a low soil water matric potential and more water stress in the grapevines. Due to the higher vigour, resulting in more canopy shading, and more water stress, the dominant aroma in wines from the Tukulu soil was fresh vegetative. The Hutton soil maintained consistency with regards to both yield and wine quality compared to previous seasons. On the other hand the Tukulu soil supported a higher yield, but with lower than normal wine quality. The Avalon soil at Papegaaiberg maintained the highest soil water potential towards the end of the season, probably due to capillary supplementation from the sub-soil. Grapevines on the Tukulu soil at Papegaaiberg experienced much higher water stress than ones on the other three soils, especially during the later part of the season. This could be ascribed to a combination of factors, the most important being the severe soil compaction at a shallow depth, seriously limiting rooting depth and root distribution, which is detrimental to grapevine performance. Both the soil water status and atmospheric conditions played important roles in determining the amount of water stress that the grapevines experienced at different stages. The air temperature and vapour pressure deficit throughout the season were consistently lower at Helshoogte, the cooler terroir, compared to Papegaaiberg, the warmer terroir. At flowering, Ψl was lower for grapevines at Helshoogte than at Papegaaiberg, showing that diurnal grapevine water status was primarily controlled by soil water content. The difference in grapevine water status between the two terroirs gradually diminished until it was reversed during the post harvest period when Ψl in grapevines at Papegaaiberg tended to be lower compared to those at Helshoogte. The relatively low pre-dawn Ψl at Helshoogte indicated that the grapevines were subjected to excessive water stress resulting from the low soil water content. However, grapevines at Helshoogte did not suffer material water stress (i.e. Ψl < -1.20 MPa) during the warmest part of the day, suggesting that partial stomatal closure prevented the development of excessive water stress in the grapevines. This suggests that low pre-dawn Ψl values do not necessarily imply that grapevines will experience more water stress over the warmer part of the day, or visa versa. This does not rule out the possibility that side-effects of partial stomatal closure, such as reduced photosynthesis, can have negative effects on grapevine functioning in general. These results also suggest that measurement of diurnal Ψl cycles at various phenological stages is required to understand and quantify terroir effects on grapevine water status.