Browsing by Author "Lacerda, Miguel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemIdentification of broadly neutralizing antibody epitopes in the HIV-1 envelope glycoprotein using evolutionary models(BioMed Central, 2013-12-02) Lacerda, Miguel; Moore, Penny L.; Ngandu, Nobubelo K.; Seaman, Michael; Gray, Elin S.; Murrell, Ben; Krishnamoorthy, Mohan; Nonyane, Molati; Madiga, Maphuti; Wibmer, Constantinos K.; Sheward, Daniel; Bailer, Robert T.; Gao, Hongmei; Greene, Kelli M.; Karim, Salim S. A.; Mascola, John R.; Korber, Bette T. M.; Montefiori, David C.; Morris, Lynn; Williamson, Carolyn; Seoighe, Cathal; the CAVD-NSDP ConsortiumBackground Identification of the epitopes targeted by antibodies that can neutralize diverse HIV-1 strains can provide important clues for the design of a preventative vaccine. Methods We have developed a computational approach that can identify key amino acids within the HIV-1 envelope glycoprotein that influence sensitivity to broadly cross-neutralizing antibodies. Given a sequence alignment and neutralization titers for a panel of viruses, the method works by fitting a phylogenetic model that allows the amino acid frequencies at each site to depend on neutralization sensitivities. Sites at which viral evolution influences neutralization sensitivity were identified using Bayes factors (BFs) to compare the fit of this model to that of a null model in which sequences evolved independently of antibody sensitivity. Conformational epitopes were identified with a Metropolis algorithm that searched for a cluster of sites with large Bayes factors on the tertiary structure of the viral envelope. Results We applied our method to ID50 neutralization data generated from seven HIV-1 subtype C serum samples with neutralization breadth that had been tested against a multi-clade panel of 225 pseudoviruses for which envelope sequences were also available. For each sample, between two and four sites were identified that were strongly associated with neutralization sensitivity (2ln(BF) > 6), a subset of which were experimentally confirmed using site-directed mutagenesis. Conclusions Our results provide strong support for the use of evolutionary models applied to cross-sectional viral neutralization data to identify the epitopes of serum antibodies that confer neutralization breadth.
- ItemUnravelling the interaction between the DRD2 and DRD4 genes, personality traits and concussion risk(BMJ Publishing Group, 2019) Abrahams, Shameemah; McFie, Sarah; Lacerda, Miguel; Patricios, Jon; Suter, Jason; September, Alison V.; Posthumus, MichaelBackground: Concussion occurs when biomechanical forces transmitted to the head result in neurological deficits. Personality may affect the balance between safe and dangerous play potentially influencing concussion risk. Dopamine receptor D2 (DRD2) and dopamine receptor D4 (DRD4) genetic polymorphisms were previously associated with personality traits. Objectives: This case–control genetic association study investigated the associations of (1) DRD2 and DRD4 genotypes with concussion susceptibility and personality, (2) personality with concussion susceptibility and (3) the statistical model of genotype, personality and concussion susceptibility. Methods: In total, 138 non-concussed controls and 163 previously concussed cases were recruited from high school (n=135, junior), club and professional rugby teams (n=166, senior). Participants were genotyped for DRD2 rs12364283 (A>G), DRD2 rs1076560 (C>A) and DRD4 rs1800955 (T>C) genetic variants. Statistical analyses including structural equation modelling were performed using the R environment and STATA. Results: The rs1800955 CC genotype (p=0.014) and inferred DRD2 (rs12364283–rs1076560)–DRD4 (rs1800955) A–C–C allele combination (p=0.019) were associated with decreased concussion susceptibility in juniors. The rs1800955 TT and CT genotypes were associated with low reward dependence in juniors (p<0.001) and seniors (p=0.010), respectively. High harm avoidance was associated with decreased concussion susceptibility in juniors (p=0.009) and increased susceptibility in seniors (p=0.001). The model showed that a genetic variant was associated with personality while personality was associated with concussion susceptibility. Conclusion: These findings highlight the linear relationship between genetics, personality and concussion susceptibility. Identifying a genetic profile of ‘high risk’ behaviour, together with the development of personalised behavioural training, can potentially reduce concussion risk.