Browsing by Author "Kemp, Jaco"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemChange detection of bare areas in the Xolobeni region, South Africa using Landsat NDVI(CONSAS Conference, 2015-06) Kemp, Jaco; Singh, Rebekah Gereldene; Engelbrecht, JeanineIdentification and protection of areas that are vulnerable to erosion is essential for the conservation of the sensitive wetlands and estuarine ecosystems along the Xolobeni coastal strip. The forecasting of these erosion susceptible areas requires an understanding of the inter- relationships of the critical factors that have influenced erosion potential over time. Vegetation and bare areas are some of the contributing factors that have influenced erosion at Xolobeni. This study used remote sensing as a tool to provide some information on the inter-relationship between vegetated classes and bare areas. Normalised Difference Vegetation Index (NDVI) data derived from multi-temporal Landsat 5 imagery has formed the baseline information for this study. A density slicing approach was adopted to classify the region into four vegetation structure classes of predominant land cover types. Post classification change detection data has provided an understanding of the relative susceptibility of the different vegetated classes to being degraded to bare areas. The results suggest that poorly vegetated regions were most susceptible to further degradation and an elevated susceptibility to erosion. On the other hand, moderately and densely vegetated regions were less susceptible to land degradation. The information can be used to identify measures to mitigate the effects of land degradation in vulnerable areas.
- ItemExtreme 1-day rainfall distributions : analysing change in the Western Cape(Academy of Science of South Africa, 2017) De Waal, Jan H.; Chapman, Arthur; Kemp, JacoSevere floods in the Western Cape Province of South Africa have caused significant damage to property and infrastructure over the past decade (2003–2014). The hydrological design criteria for exposed structures and design flood calculations are based mostly on the implicit assumption of stationarity, which holds that natural systems vary within an envelope of variability that does not change with time. This assumption was tested by examining the changes in extreme 1-day rainfall high percentiles (95th and 98th) and both the 20- and 50-year return period rainfall, comparing the period 1950–1979 against that of 1980–2009 across the province. A generalised Pareto distribution and a peaks-over-threshold sampling approach was applied to 76 rainfall stations across the province. Of these stations, 48 (63%) showed an increase in the 50-year return period 1-day rainfall and 28 (37%) showed a decrease in the 1980–2009 period at the 95th percentile peaks-over-threshold. At the 98th percentile peaks-over-threshold, 49 stations (64%) observed an increase and 27 (36%) a decrease for the later period. The change in the number of 3-day storms from the first to the second period is negligible, evaluated at 0.9% and 0.5% at the 95th and 98th percentile peaks-over-threshold levels, using cluster analysis. While there is no clear spatial coherency to the results, the general trend indicates an increase in frequency of intense rainfalls in the latter half of the 20th and early 21st centuries. These results bring into question assumptions of stationarity commonly used in design rainfall.
- ItemA simple normalized difference approach to burnt area mapping using multi-polarisation C-band SAR(MDPI, 2017) Engelbrecht, Jeanine; Theron, Andre; Vhengani, Lufuno; Kemp, JacoIn fire-prone ecosystems, periodic fires are vital for ecosystem functioning. Fire managers seek to promote the optimal fire regime by managing fire season and frequency requiring detailed information on the extent and date of previous burns. This paper investigates a Normalised Difference α-Angle (NDαI) approach to burn-scar mapping using C-band data. Polarimetric decompositions are used to derive α-angles from pre-burn and post-burn scenes and NDαI is calculated to identify decreases in vegetation between the scenes. The technique was tested in an area affected by a wildfire in January 2016 in the Western Cape, South Africa. The quad-pol H-A-α decomposition was applied to RADARSAT-2 data and the dual-pol H-α decomposition was applied to Sentinel-1A data. The NDαI results were compared to a burn scar extracted from Sentinel-2A data. High overall accuracies of 97.4% (Kappa = 0.72) and 94.8% (Kappa = 0.57) were obtained for RADARSAT-2 and Sentinel-1A, respectively. However, large omission errors were found and correlated strongly with areas of high local incidence angle for both datasets. The combined use of data from different orbits will likely reduce these errors. Furthermore, commission errors were observed, most notably on Sentinel-1A results. These errors may be due to the inability of the dual-pol H-α decomposition to effectively distinguish between scattering mechanisms. Despite these errors, the results revealed that burnt areas could be extracted and were in good agreement with the results from Sentinel-2A. Therefore, the approach can be considered in areas where persistent cloud cover or smoke prevents the extraction of burnt area information using conventional multispectral approaches
- ItemThe use of Landsat and aerial photography for the assessment of coastal erosion and erosion susceptibility in False Bay, South Africa(CONSAS Conference, 2015-06) Callaghan, Kerry; Engelbrecht, Jeanine; Kemp, JacoCoastal erosion is a worldwide hazard, the consequences of which can only be mitigated via thorough and efficient monitoring of erosion. This study aimed to employ remote sensing techniques on aerial photographs and Landsat TM/ETM+ imagery for the detection and monitoring of coastal erosion in False Bay, South Africa. Vegetation change detection as well as post-classification change detection were performed on the Landsat imagery. Furthermore, aerial photographs were analysed using the Digital Shoreline Analysis System (DSAS), which determines statistical differences in shoreline position over time. The results showed that while the resolution of the Landsat imagery was not sufficient to quantify and analyse erosion along the beach itself, the larger area covered by the satellite images enabled the identification of changes in landcover conditions leading to an increased susceptibility to erosion. Notably, the post-classification change detection indicated consistent increases in built-up areas, while sand dune, beach, and sand (not beach) decreased. NDVI differencing led to the conclusion that vegetation health was decreasing while reflective surfaces such as bare sand and roads were increasing. Both of these are indicative of an increased susceptibility to coastal erosion. Aerial photographs were used for detailed analysis of four focus areas and results indicated that coastal erosion was taking place at all four areas. The higher resolution available on the aerial photographs was vital for the quantification of erosion and sedimentation rates.
- ItemUsing remote sensing in support of environmental management : a framework for selecting products, algorithms and methods(Elsevier, 2016-08) De Klerk, Helen Margaret; Gilbertson, Jason; Luck-Vogel, Melanie; Kemp, Jaco; Munch, ZahnTraditionally, to map environmental features using remote sensing, practitioners will use training data to develop models on various satellite data sets using a number of classification approaches and use test data to select a single ‘best performer’ from which the final map is made. We use a combination of an omission/commission plot to evaluate various results and compile a probability map based on consistently strong performing models across a range of standard accuracy measures. We suggest that this easy-to-use approach can be applied in any study using remote sensing to map natural features for management action. We demonstrate this approach using optical remote sensing products of different spatial and spectral resolution to map the endemic and threatened flora of quartz patches in the Knersvlakte, South Africa. Quartz patches can be mapped using either SPOT 5 (used due to its relatively fine spatial resolution) or Landsat8 imagery (used because it is freely accessible and has higher spectral resolution). Of the variety of classification algorithms available, we tested maximum likelihood and support vector machine, and applied these to raw spectral data, the first three PCA summaries of the data, and the standard normalised difference vegetation index.We found that there is no ‘one size fits all’ solution to the choice of a ‘best fit’ model (i.e. combination of classification algorithm or data sets), which is in agreement with the literature that classifier performance will vary with data properties.We feel this lends support to our suggestion that rather than the identification of a ‘single best’ model and a map based on this result alone, a probability map based on the range of consistently top performing models provides a rigorous solution to environmental mapping.