Browsing by Author "Keller, Felix"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAbiotic stress-induced accumulation of raffinose in Arabidopsis leaves is mediated by a single raffinose synthase (RS5, At5g40390)(BioMed Central, 2013) Egert, Aurelie; Keller, Felix; Peters, ShaunBackground: The sucrosylgalactoside oligosaccharide raffinose (Raf, Suc-Gal1) accumulates in Arabidopsis leaves in response to a myriad of abiotic stresses. Whilst galactinol synthases (GolS), the first committed enzyme in Raf biosynthesis are well characterised in Arabidopsis, little is known of the second biosynthetic gene/enzyme raffinose synthase (RS). Conflicting reports suggest the existence of either one or six abiotic stress-inducible RSs (RS-1 to -6) occurring in Arabidopsis. Indirect evidence points to At5g40390 being responsible for low temperature-induced Raf accumulation in Arabidopsis leaves. Results By heterologously expressing At5g40390 in E.coli, we demonstrate that crude extracts synthesise Raf in vitro, contrary to empty vector controls. Using two independent loss-of-function mutants for At5g40390 (rs 5–1 and 5–2), we confirm that this RS is indeed responsible for Raf accumulation during low temperature-acclimation (4°C), as previously reported. Surprisingly, leaves of mutant plants also fail to accumulate any Raf under diverse abiotic stresses including water-deficit, high salinity, heat shock, and methyl viologen-induced oxidative stress. Correlated to the lack of Raf under these abiotic stress conditions, both mutant plants lack the typical stress-induced RafS activity increase observed in the leaves of wild-type plants. Conclusions Collectively our findings point to a single abiotic stress-induced RS isoform (RS5, At5g40390) being responsible for Raf biosynthesis in Arabidopsis leaves. However, they do not support a single RS hypothesis since the seeds of both mutant plants still contained Raf, albeit at 0.5-fold lower concentration than seeds from wild-type plants, suggesting the existence of at least one other seed-specific RS. These results also unambiguously discount the existence of six stress-inducible RS isoforms suggested by recent reports.
- ItemEvidence for water deficit-induced mass increases of raffinose family oligosaccharides (RFOs) in the leaves of three Craterostigma resurrection plant species(Frontiers Media, 2015-07) Egert, Aurelie; Eicher, Barbara; Keller, Felix; Peters, ShaunThe leaves of the resurrection plant Craterostigma plantagineum accumulate sucrose during dehydration, via a conversion from the unusual C8 ketose-sugar 2-octulose. However, raffinose family oligosaccharides (RFOs) have been shown to be major photosynthetic products in this plant. The tetrasaccharide stachyose is the major phloem-mobile carbohydrate and is used as a carbon store in roots. It has been suggested that this carbon store is remobilized during rehydration, presumably for cellular repair processes. We examined the effects of water deficit on the leaf water-soluble carbohydrate profiles of three Craterostigma species. Apart from the classical 2-octulose-to-sucrose interconversion, there was a strong water deficit-associated mass increase of RFOs up to the pentasaccharide verbascose. However, the activities of three dedicated RFO biosynthetic enzymes (raffinose, stachyose, and verbascose synthase) was not correlated with RFO accumulation, suggesting that biosynthetic enzyme activities measured in the early stages of water-deficit were sufficient to synthesize enough galactinol and lead to RFO accumulation in the leaves. Our findings are suggestive of RFOs providing additional carbohydrate-based stress protection to the leaves of these plants during the desiccated state.