Browsing by Author "Kassanjee, Reshma"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemInterpreting HIV diagnostic histories into infection time estimates : analytical framework and online tool(BMC (part of Springer Nature), 2019-10-26) Grebe, Eduard; Facente, Shelley N.; Bingham, Jeremy; Pilcher, Christopher D.; Powrie, Andrew; Gerber, Jarryd; Priede, Gareth; Chibawara, Trust; Busch, Michael P.; Murphy, Gary; Kassanjee, Reshma; Welte, AlexBackground: It is frequently of epidemiological and/or clinical interest to estimate the date of HIV infection or time-since-infection of individuals. Yet, for over 15 years, the only widely-referenced infection dating algorithm that utilises diagnostic testing data to estimate time-since-infection has been the ‘Fiebig staging’ system. This defines a number of stages of early HIV infection through various standard combinations of contemporaneous discordant diagnostic results using tests of different sensitivity. To develop a new, more nuanced infection dating algorithm, we generalised the Fiebig approach to accommodate positive and negative diagnostic results generated on the same or different dates, and arbitrary current or future tests – as long as the test sensitivity is known. For this purpose, test sensitivity is the probability of a positive result as a function of time since infection. Methods: The present work outlines the analytical framework for infection date estimation using subject-level diagnostic testing histories, and data on test sensitivity. We introduce a publicly-available online HIV infection dating tool that implements this estimation method, bringing together 1) curatorship of HIV test performance data, and 2) infection date estimation functionality, to calculate plausible intervals within which infection likely became detectable for each individual. The midpoints of these intervals are interpreted as infection time ‘point estimates’ and referred to as Estimated Dates of Detectable Infection (EDDIs). The tool is designed for easy bulk processing of information (as may be appropriate for research studies) but can also be used for individual patients (such as in clinical practice). Results: In many settings, including most research studies, detailed diagnostic testing data are routinely recorded, and can provide reasonably precise estimates of the timing of HIV infection. We present a simple logic to the interpretation of diagnostic testing histories into infection time estimates, either as a point estimate (EDDI) or an interval (earliest plausible to latest plausible dates of detectable infection), along with a publicly-accessible online tool that supports wide application of this logic. Conclusions: This tool, available at https://tools.incidence-estimation.org/idt/, is readily updatable as test technology evolves, given the simple architecture of the system and its nature as an open source project.
- ItemRecalibration of the limiting antigen avidity EIA to determine mean duration of recent infection in divergent HIV-1 subtypes(Public Library of Science, 2015) Duong, Yen T.; Kassanjee, Reshma; Welte, Alex; Morgan, Meade; De, Anindya; Dobbs, Trudy; Rottinghaus, Erin; Nkengasong, John; Kittinunvorakoon, Chonticha; Raengsakulrach, Boonyos; Martin, Michael; Choopanya, Kachit; Vanichseni, Suphak; Jiang, Yan; Qiu, Maofeng; Yu, Haiying; Hao, Yan; Shah, Neha; Le, Linh-Vi; Kim, Andrea A.; Nguyen, Tuan Anh; Ampofo, William; Parekh, Bharat S.; Curlin, Marcel E.Background: Mean duration of recent infection (MDRI) and misclassification of long-term HIV-1 infections, as proportion false recent (PFR), are critical parameters for laboratory-based assays for estimating HIV-1 incidence. Recent review of the data by us and others indicated that MDRI of LAg-Avidity EIA estimated previously required recalibration. We present here results of recalibration efforts using >250 seroconversion panels and multiple statistical methods to ensure accuracy and consensus. Methods: A total of 2737 longitudinal specimens collected from 259 seroconverting individuals infected with diverse HIV-1 subtypes were tested with the LAg-Avidity EIA as previously described. Data were analyzed for determination of MDRI at ODn cutoffs of 1.0 to 2.0 using 7 statistical approaches and sub-analyzed by HIV-1 subtypes. In addition, 3740 specimens from individuals with infection >1 year, including 488 from patients with AIDS, were tested for PFR at varying cutoffs. Results: Using different statistical methods, MDRI values ranged from 88–94 days at cutoff ODn = 1.0 to 177–183 days at ODn = 2.0. The MDRI values were similar by different methods suggesting coherence of different approaches. Testing for misclassification among long-term infections indicated that overall PFRs were 0.6% to 2.5% at increasing cutoffs of 1.0 to 2.0, respectively. Balancing the need for a longer MDRI and smaller PFR (<2.0%) suggests that a cutoff ODn = 1.5, corresponding to an MDRI of 130 days should be used for cross-sectional application. The MDRI varied among subtypes from 109 days (subtype A&D) to 152 days (subtype C). Conclusions: Based on the new data and revised analysis, we recommend an ODn cutoff = 1.5 to classify recent and long-term infections, corresponding to an MDRI of 130 days (118–142). Determination of revised parameters for estimation of HIV-1 incidence should facilitate application of the LAg-Avidity EIA for worldwide use
- ItemSeroconverting blood donors as a resource for characterising and optimising recent infection testing algorithms for incidence estimation(Public Library of Science, 2011-06-09) Kassanjee, Reshma; Welte, Alex; McWalter, Thomas A.; Keating, Sheila M.; Vermeulen, Marion; Stramer, Susan L.; Busch, Michael P.Introduction: Biomarker-based cross-sectional incidence estimation requires a Recent Infection Testing Algorithm (RITA) with an adequately large mean recency duration, to achieve reasonable survey counts, and a low false-recent rate, to minimise exposure to further bias and imprecision. Estimating these characteristics requires specimens from individuals with well-known seroconversion dates or confirmed long-standing infection. Specimens with well-known seroconversion dates are typically rare and precious, presenting a bottleneck in the development of RITAs. Methods: The mean recency duration and a 'false-recent rate' are estimated from data on seroconverting blood donors. Within an idealised model for the dynamics of false-recent results, blood donor specimens were used to characterise RITAs by a new method that maximises the likelihood of cohort-level recency classifications, rather than modelling individual sojourn times in recency. Results: For a range of assumptions about the false-recent results (0% to 20% of biomarker response curves failing to reach the threshold distinguishing test-recent and test-non-recent infection), the mean recency duration of the Vironostika-LS ranged from 154 (95% CI: 96-231) to 274 (95% CI: 234-313) days in the South African donor population (n = 282), and from 145 (95% CI: 67-226) to 252 (95% CI: 194-308) days in the American donor population (n = 106). The significance of gender and clade on performance was rejected (p-value = 10%), and utility in incidence estimation appeared comparable to that of a BED-like RITA. Assessment of the Vitros-LS (n = 108) suggested potentially high false-recent rates. Discussion: The new method facilitates RITA characterisation using widely available specimens that were previously overlooked, at the cost of possible artefacts. While accuracy and precision are insufficient to provide estimates suitable for incidence surveillance, a low-cost approach for preliminary assessments of new RITAs has been demonstrated. The Vironostika-LS and Vitros-LS warrant further analysis to provide greater precision of estimates. © 2011 Kassanjee et al.