Browsing by Author "Jimenez-Alfaro, Borja"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDisentangling vegetation diversity from climate–energy and habitat heterogeneity for explaining animal geographic patterns(Wiley Open Access, 2016) Jimenez-Alfaro, Borja; Chytry, Milan; Mucina, Ladislav; Grace, James B.; Rejmanek, MarcelBroad-scale animal diversity patterns have been traditionally explained by hypotheses focused on climate–energy and habitat heterogeneity, without con- sidering the direct influence of vegetation structure and composition. However, integrating these factors when considering plant–animal correlates still poses a major challenge because plant communities are controlled by abiotic factors that may, at the same time, influence animal distributions. By testing whether the number and variation of plant community types in Europe explain coun- try-level diversity in six animal groups, we propose a conceptual framework in which vegetation diversity represents a bridge between abiotic factors and ani- mal diversity. We show that vegetation diversity explains variation in animal richness not accounted for by altitudinal range or potential evapotranspiration, being the best predictor for butterflies, beetles, and amphibians. Moreover, the dissimilarity of plant community types explains the highest proportion of varia- tion in animal assemblages across the studied regions, an effect that outper- forms the effect of climate and their shared contribution with pure spatial variation. Our results at the country level suggest that vegetation diversity, as estimated from broad-scale classifications of plant communities, may contribute to our understanding of animal richness and may be disentangled, at least to a degree, from climate–energy and abiotic habitat heterogeneity.
- ItemEUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats(2020-07) Chytry, Milan; Tichy, Lubomir; Hennekens, Stephan M.; Knollova, Ilona; Janssen, John A. M.; Rodwell, John S.; Peterka, Tomas; Marceno, Corrado; Landucci, Flavia; Danihelka, Jiri; Hajek, Michal; Dengler, Jurgen; Novak, Pavel; Zukal, Dominik; Jimenez-Alfaro, Borja; Mucina, Ladislav; Abdulhak, Sylvain; Acic, Svetlana; Agrillo, Emiliano; Attorre, Fabio; Bergmeier, Erwin; Biurrun, Idoia; Boch, Steffen; Boloni, Janos; Bonari, Gianmaria; Braslavskaya, Tatiana; Bruelheide, Helge; Campos, Juan Antonio; Carni, Andraz; Casella, Laura; Cuk, Mirjana; Custerevska, Renata; De Bie, Els; Delbosc, Pauline; Demina, Olga; Didukh, Yakiv; Dite, Daniel; Dziuba, Tetiana; Ewald, Jorg; Gavilan, Rosario G.; Gegout, Jean-Claude; del Galdo, Gian Pietro Giusso; Golub, Valentin; Goncharova, Nadezhda; Goral, Friedemann; Graf, Ulrich; Indreica, Adrian; Isermann, Maike; Jandt, Ute; Jansen, Florian; Jansen, Jan; Jaskova, Anni; Jirousek, Martin; Kacki, Zygmunt; Kalnikova, Veronika; Kavgacı, Ali; Khanina, Larisa; Korolyuk, Andrey Yu.; Kozhevnikova, Mariya; Kuzemko, Anna; Kuzmic, Filip; Kuznetsov, Oleg L.; Laiviņs, Maris; Lavrinenko, Igor; Lavrinenko, Olga; Lebedeva, Maria; Lososova, Zdenka; Lysenko, Tatiana; Maciejewski, Lise; Mardari, Constantin; Marinsek, Aleksander; Napreenko, Maxim G.; Onyshchenko, Viktor; Perez-Haase, Aaron; Pielech, Remigiusz; Prokhorov, Vadim; Rasomavicius, Valerijus; Rojo, Maria Pilar Rodriguez; Rusina, Solvita; Schrautzer, Joachim; Sibik, Jozef; Silc, Urban; Skvorc, Zeljko; Smagin, Viktor A.; Stancic, Zvjezdana; Stanisci, Angela; Tikhonova, Elena; Tonteri, Tiina; Uogintas, Domas; Valachovic, Milan; Vassilev, Kiril; Vynokurov, Denys; Willner, Wolfgang; Yamalov, Sergey; Evans, Douglas; Lund, Mette Palitzsch; Spyropoulou, Rania; Tryfon, Eleni; Schaminee, Joop H. J.Abstract: Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation-plot records to the habitats of the EUNIS system, use it to classify a European vegetation-plot database, and compile statistically-derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS-ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set-theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species-to-habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man-made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS-ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment.