Browsing by Author "Jacobson, Daniel"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemComparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse(BioMed Central, 2013-11) Marx, Isa Jacoba; Van Wyk, Niel; Smit, Salome; Jacobson, Daniel; Viljoen-Bloom, Marinda; Volschenk, HeinrichBackground: The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme profile of a newly isolated Trichoderma asperellum S4F8 strain with that of Trichoderma reesei Rut C30, cultured on sugarcane bagasse (SCB) using solid-state fermentation (SSF). Results: Comparison of the lignocellulolytic enzyme profiles of S4F8 and Rut C30 showed that S4F8 had significantly higher hemicellulase and β-glucosidase enzyme activities. Liquid chromatography tandem mass spectrometry analysis of the two fungal secretomes enabled the detection of 815 proteins in total, with 418 and 397 proteins being specific for S4F8 and Rut C30, respectively, and 174 proteins being common to both strains. In-depth analysis of the associated biological functions and the representation of glycoside hydrolase family members within the two secretomes indicated that the S4F8 secretome contained a higher diversity of main and side chain hemicellulases and β-glucosidases, and an increased abundance of some of these proteins compared with the Rut C30 secretome. Conclusions: In SCB SSF, T. asperellum S4F8 produced a more complex lignocellulolytic cocktail, with enhanced hemicellulose and cellobiose hydrolysis potential, compared with T. reesei Rut C30. This bodes well for the development of a more cost-effective and efficient lignocellulolytic enzyme cocktail from T. asperellum for lignocellulosic feedstock hydrolysis.
- ItemSequence-based analysis of the vitis vinifera L. cv cabernet sauvignon grape must mycobiome in three South African vineyards employing distinct agronomic systems(Frontiers Media, 2015-11) Setati, Mathabatha E.; Jacobson, Daniel; Bauer, FlorianRecent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as “microbial terroir.” The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.
- ItemThe vineyard yeast microbiome, a mixed model microbial map(PLoS, 2012-12-26) Setati, Mathabatha Evodia; Jacobson, Daniel; Andong, Ursula-Claire; Bauer, FlorianVineyards harbour a wide variety of microorganisms that play a pivotal role in pre- and post-harvest grape quality and will contribute significantly to the final aromatic properties of wine. The aim of the current study was to investigate the spatial distribution of microbial communities within and between individual vineyard management units. For the first time in such a study, we applied the Theory of Sampling (TOS) to sample gapes from adjacent and well established commercial vineyards within the same terroir unit and from several sampling points within each individual vineyard. Cultivation-based and molecular data sets were generated to capture the spatial heterogeneity in microbial populations within and between vineyards and analysed with novel mixed-model networks, which combine sample correlations and microbial community distribution probabilities. The data demonstrate that farming systems have a significant impact on fungal diversity but more importantly that there is significant species heterogeneity between samples in the same vineyard. Cultivation-based methods confirmed that while the same oxidative yeast species dominated in all vineyards, the least treated vineyard displayed significantly higher species richness, including many yeasts with biocontrol potential. The cultivatable yeast population was not fully representative of the more complex populations seen with molecular methods, and only the molecular data allowed discrimination amongst farming practices with multivariate and network analysis methods. Importantly, yeast species distribution is subject to significant intra-vineyard spatial fluctuations and the frequently reported heterogeneity of tank samples of grapes harvested from single vineyards at the same stage of ripeness might therefore, at least in part, be due to the differing microbiota in different sections of the vineyard.