Browsing by Author "Jacobs, Shayne M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemDiet and seasonal dispersal of extralimital giraffe at Sanbona Wildlife Reserve, Little Karoo, South Africa(AOSIS Publishing, 2016-08) Gordon, Claire N.; Eichenberger, Liesl; Vorster, Paul; Leslie, Alison J.; Jacobs, Shayne M.South African giraffe (Giraffa camelopardalis giraffa) have been introduced as an extralimital species to private farms in the Little Karoo on the basis of economic sustainability, and the need to create a competitive tourism product. However, little is known about the medium- to long-term impacts and ecological sustainability of such introductions. The diet of a population of giraffe on Sanbona Wildlife Reserve, near the town of Ladismith, was assessed via direct observations between January and October 2014, in order to determine their potential impact on the world’s most species-rich semi-desert, the Succulent Karoo. Unlike giraffe in their native range, the Sanbona population showed seasonal preference for browse species. Acacia karroo (sweet thorn) appears to be the preferred browse species during autumn and spring, with Schotia afra being the preferred species in winter, and no significant preference being shown in summer. Giraffe also appeared to seasonally move between catchments where tree species other than A. karroo occurs, especially during winter and spring when the tributaries of the Brak River, containing mixed Acacia with S. afra (karoo boer-bean) and Euclea undulata (small-leaved guarri), were visited with increasing frequency. These results largely confirm the importance of A. karroo as the main browse species in this environment but also suggest that other species may be important components of the diet of extralimital giraffe in the Little Karoo. On farms where A. karroo is dominant, supplementary feed may be needed when A. karroo browse is unavailable due to leaf drop. Conservation implications: Acacia karroo was the main browse species of extralimital G. c. giraffa at Sanbona Wildlife Reserve, but it switched to S. afra during winter. This suggests that an assessment of alternative food species forms part of suitability assessments for the introduction of extralimital G. c. giraffa for areas similar to Sanbona.
- ItemEcophysiological traits associated with the competitive ability of invasive Australian acacias(Wiley-Blackwell, 2011-09) Morris, Taryn L.; Esler, Karen J.; Barger, Nichole N.; Jacobs, Shayne M.; Cramer, Michael D.Aim: We explored morphological and ecophysiological traits that enable invasive Australian acacias to compete with native species for resources (light, water and nutrients) necessary to support the substantial growth associated with successful invasions. Location: Global. Results: Invasive Australian acacias grow large and seed prolifically in invaded regions. The greater capacity for vegetative growth is underpinned by their ability to acquire and efficiently use resources in non-native habitats. Key biological traits that enhance acquisition include (1) rapid and substantial allocation to root mass (up to 6-fold more than co-occurring native species) directed towards deep roots (at least 50% longer than those of natives) and to extensive shallow root networks; (2) heteroblasty, in most species, conferring high relative growth rates as bipinnate seedlings but long-lived, nutrient-conserving phyllodes as adults and (3) strong N2-fixation abilities. Main conclusions: The ecophysiological traits that govern the competitive interaction of invasive Australian acacias with native species are an important component of the recognized suite of factors including introduction history, human use and enemy release that combine to produce successful invasions. Traits interact to give Australian acacias competitive advantage over many native species. One such interaction is that of N2 fixation, which when coupled with slow decomposition of sclerophyllous phyllodes results in alteration of soil nutrient cycling. The lasting legacy of soil N-enrichment hinders the competitive ability of native species and further enhances invasions. The importance of edaphic factors and competitive interactions in determining invasive success should be considered in predictive modelling of species distributions. © 2011 Blackwell Publishing Ltd.
- ItemFoliar nitrogen dynamics of an invasive legume compared to native non-legumes in fynbos riparian zones varying in water availability(South African Water Research Commission, 2019) Crous, Casparus J.; Drake, Deanne C.; Jacobsen, Anna L.; Pratt, R. Brandon; Jacobs, Shayne M.; Esler, Karen J.The legume Acacia mearnsii invades South Africa’s fynbos riparian zones and may alter the nitrogen (N) dynamics and supply in these areas that typically support few native N fixers. Nitrogen uptake by A. mearnsii may also be influenced by water availability, potentially affecting riparian-specific performance and impact estimations. We expected to find functional differences between the invasive legume and the two co-occurring but non-leguminous native species Brabejum stellatifolium and Metrosideros angustifolia. We also wanted to examine whether in-situ water availability affected N source or uptake in the invasive species. We found A. mearnsii was indeed functioning differently from non-N-fixing native species, and had considerably higher foliar %N. Interestingly, 15N abundance and uptake were associated with site hydrology, meaning water availability should be scrutinised when assuming N-fixing in A. mearnsii using δ15N. Nonetheless, higher water availability to A. mearnsii in fynbos riparian ecosystems did increase foliar N uptake. This has implications for prioritizing clearing of sites with increased nutrient deposition, such as dense stands in relatively moist riparian zones.