Browsing by Author "Huguet, Carme"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemArchaeal membrane lipid-based paleothermometry for applications in polar oceans(The Oceanography Society, 2020-06) Fietz, Susanne; Ho, Sze Ling; Huguet, CarmeTo establish whether ongoing climate change is outside the range of natural variability and a result of anthropogenic inputs, it is essential to reconstruct past oceanic and atmospheric temperatures for comparison with the modern world. Reconstructing past temperatures is a complex endeavor that employs indirect proxy indicators. Over the past two decades, promising paleothermometers have been developed that use isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs) from the membrane lipids of archaea preserved in marine sediments. These proxies are based on the observed relationship between lipid structure and temperature. As with all proxy indicators, observed relationships are often complex. Here, we focus on the application of isoGDGT paleotemperature proxies in the polar oceans, critical components of the global climate system. We discuss the application of and caveats regarding these archaeal membrane lipid-derived proxies and make recommendations to improve isoGDGT-derived polar ocean temperature reconstructions. We also review initial successes using hydroxylated (OH) isoGDGTs proxies in cold Arctic and Southern Ocean regions and recommend that multi-proxy approaches, including both hydroxylated and non-hydroxylated isoGDGTs, be used to contribute to the robustness of paleotemperature reconstructions.
- ItemTemperature and monsoon tango in a tropical stalagmite : last glacial- Interglacial climate dynamics(Nature Research, 2018) Huguet, Carme; Routh, Joyanto; Fietz, Susanne; Lone, Mahjoor Ahmad; Kalpana, M. S.; Ghosh, Prosenjit; Mangini, Augusto; Kumar, Vikash; Rangarajan, RaviHigh-resolution paleoclimate data on stable isotopes in a stalagmite were coupled to glycerol dialkyl glycerol tetraethers (GDGTs). The Indian Summer Monsoon (ISM) transitioned from limited rainfall during the Last Glacial Maximum (LGM) to intense precipitation during early Holocene (22 to 6 ka). This was associated with changes in stalagmite growth, abundance of branched (br) and isoprenoid (iso) GDGTs, as well as δ18O, δ13C, Sr/Ca and GDGT-derived signals providing both temperature and moisture information. The reconstructed mean annual air temperature (MAAT) of the most modern stalagmite sample at ~19 °C, matches the surface and cave MAAT, but was ~4 °C lower during LGM. Warming at the end of LGM occurred before ISM strengthened and indicate 6 ka lag consistent with sea surface temperature records. The isotope records during the Younger Dryas show rapid progressions to dry conditions and weak monsoons, but these shifts are not coupled to TEX86. Moreover, change to wetter and stronger ISM, along with warmer Holocene conditions are not continuous indicating a decoupling of local temperatures from ISM.