Browsing by Author "Huerga, Helena"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA comparison of self-report and antiretroviral detection to inform estimates of antiretroviral therapy coverage, viral load suppression and HIV incidence in Kwazulu-Natal, South Africa(BioMed Central, 2017-09-29) Huerga, Helena; Shiferie, Fisseha; Grebe, Eduard; Giuliani, Ruggero; Farhat, Jihane B.; Van-Cutsem, Gilles; Cohen, KarenAbstract Background Accurately identifying individuals who are on antiretroviral therapy (ART) is important to determine ART coverage and proportion on ART who are virally suppressed. ART is also included in recent infection testing algorithms used to estimate incidence. We compared estimates of ART coverage, viral load suppression rates and HIV incidence using ART self-report and detection of antiretroviral (ARV) drugs and we identified factors associated with discordance between the methods. Methods Cross-sectional population-based survey in KwaZulu-Natal, South Africa. Individuals 15–59 years were eligible. Interviews included questions about ARV use. Rapid HIV testing was performed at the participants’ home. Blood specimens were collected for ARV detection, LAg-Avidity HIV incidence testing and viral load quantification in HIV-positive individuals. Multivariate logistic regression models were used to identify socio-demographic covariates associated with discordance between self-reported ART and ARV detection. Results Of the 5649 individuals surveyed, 1423 were HIV-positive. Median age was 34 years and 76.3% were women. ART coverage was estimated at 51.4% (95%CI:48.5–54.3), 53.1% (95%CI:50.2–55.9) and 56.1% (95%CI:53.5–58.8) using self-reported ART, ARV detection and both methods combined (classified as ART exposed if ARV detected and/or ART reported) respectively. ART coverage estimates using the 3 methods were fairly similar within sex and age categories except in individuals aged 15–19 years: 33.3% (95%CI:23.3–45.2), 33.8% (95%CI:23.9–45.4%) and 44.3% (95%CI:39.3–46.7) using self-reported ART, ARV detection and both methods combined. Viral suppression below 1000cp/mL in individuals on ART was estimated at 89.8% (95%CI:87.3–91.9), 93.1% (95%CI:91.0–94.8) and 88.7% (95%CI:86.2–90.7) using self-reported ART, ARV detection and both methods combined respectively. HIV incidence was estimated at 1.4 (95%CI:0.8–2.0) new cases/100 person-years when employing no measure of ARV use, 1.1/100PY (95%CI:0.6–1.7) using self-reported ART, and 1.2/100PY (95%CI:0.7–1.7) using ARV detection. In multivariate analyses, individuals aged 15–19 years had a higher risk of discordance on measures of ARV exposure (aOR:9.4; 95%CI:3.9–22.8), while migrants had a lower risk (aOR:0.3; 95%CI:0.1–0.6). Conclusions In KwaZulu-Natal, the method of identifying ARV use had little impact on estimates of ART coverage, viral suppression rate and HIV incidence. However, discordant results were more common in younger individuals. This may skew estimates of ART coverage and viral suppression, particularly in adolescent surveys.
- ItemPopulation-level HIV incidence estimates using a combination of synthetic cohort and recency biomarker approaches in KwaZulu-Natal, South Africa(Public Library of Science, 2018-09-13) Grebe, Eduard; Welte, Alex; Johnson, Leigh F.; Van Cutsem, Gilles; Adrian Puren, Adrian; Ellman, Tom; Etard, Jean-Francois; Consortium for the Evaluation and Performance of HIV Incidence Assays; Huerga, HelenaIntroduction: There is a notable absence of consensus on how to generate estimates of population-level incidence. Incidence is a considerably more sensitive indicator of epidemiological trends than prevalence, but is harder to estimate. We used a novel hybrid method to estimate HIV incidence by age and sex in a rural district of KwaZulu-Natal, South Africa. Methods: Our novel method uses an ‘optimal weighting’ of estimates based on an implementation of a particular ‘synthetic cohort’ approach (interpreting the age/time structure of prevalence, in conjunction with estimates of excess mortality) and biomarkers of ‘recent infection’ (combining Lag-Avidity, Bio-Rad Avidity and viral load results to define recent infection, and adapting the method for age-specific incidence estimation). Data were obtained from a population-based cross-sectional HIV survey conducted in Mbongolwane and Eshowe health service areas in 2013. Results: Using the combined method, we find that age-specific HIV incidence in females rose rapidly during adolescence, from 1.33 cases/100 person-years (95% CI: 0.98,1.67) at age 15 to a peak of 5.01/100PY (4.14,5.87) at age 23. In males, incidence was lower, 0.34/100PY (0.00-0.74) at age 15, and rose later, peaking at 3.86/100PY (2.52-5.20) at age 30. Susceptible population-weighted average incidence in females aged 15-29 was estimated at 3.84/100PY (3.36-4.40), in males aged 15-29 at 1.28/100PY (0.68-1.50) and in all individuals aged 15-29 at 2.55/100PY (2.09-2.76). Using the conventional recency biomarker approach, we estimated HIV incidence among females aged 15-29 at 2.99/100PY (1.79-4.36), among males aged 15-29 at 0.87/100PY (0.22-1.60) and among all individuals aged 15-59 at 1.66/100PY (1.13-2.27). Discussion: HIV incidence was very high in women aged 15-30, peaking in the early 20s. Men had lower incidence, which peaked at age 30. The estimates obtained from the hybrid method are more informative than those produced by conventional analysis of biomarker data, and represents a more optimal use of available data than either the age-continuous biomarker or synthetic cohort methods alone. The method is mainly useful at younger ages, where excess mortality is low and uncertainty in the synthetic cohort estimates is reasonably small. Conclusion: Application of this method to large-scale population-based HIV prevalence surveys is likely to result in improved incidence surveillance over methods currently in wide use. Reasonably accurate and precise age-specific estimates of incidence are important to target better prevention, diagnosis and care strategies.