Browsing by Author "Hamann, Maike"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemAn exploration of human well-being bundles as identifiers of ecosystem service use patterns(Public Library of Science, 2016-10) Hamann, Maike; Biggs, Reinette, 1979-; Reyers, BelindaWe take a social-ecological systems perspective to investigate the linkages between ecosystem services and human well-being in South Africa. A recent paper identified different types of social-ecological systems in the country, based on distinct bundles of ecosystem service use. These system types were found to represent increasingly weak direct feedbacks between nature and people, from rural “green-loop” communities to urban “red-loop” societies. Here we construct human well-being bundles and explore whether the well-being bundles can be used to identify the same social-ecological system types that were identified using bundles of ecosystem service use. Based on national census data, we found three distinct well-being bundle types that are mainly characterized by differences in income, unemployment and property ownership. The distribution of these well-being bundles approximates the distribution of ecosystem service use bundles to a substantial degree: High levels of income and education generally coincided with areas characterised by low levels of direct ecosystem service use (or red-loop systems), while the majority of low well-being areas coincided with medium and high levels of direct ecosystem service use (or transition and green-loop systems). However, our results indicate that transformations from green-loop to red-loop systems do not always entail an immediate improvement in well-being, which we suggest may be due to a time lag between changes in the different system components. Using human well-being bundles as an indicator of social-ecological dynamics may be useful in other contexts since it is based on socio-economic data commonly collected by governments, and provides important insights into the connections between ecosystem services and human well-being at policy-relevant sub-national scales.
- ItemExploring the usefulness of scenario archetypes in science-policy processes : experience across IPBES assessments(Resilience Alliance, 2019) Sitas, Nadia; Harmackova, Zuzana V.; Anticamara, Jonathan A.; Arneth, Almut; Badola, Ruchi; Biggs, Reinette, 1979-; Blanchard, Ryan; Brotons, Lluis; Cantele, Matthew; Coetzer, Kaera; DasGupta, Rajarshi; den Belder, Eefje; Ghosh, Sonali; Guisan, Antoine; Gundimeda, Haripriya; Hamann, Maike; Harrison, Paula A.; Hashimoto, Shizuka; Hauck, Jennifer; Klatt, Brian J.; Kok, Kasper; Krug, Rainer M.; Niamir, Aidin; O'Farrell, Patrick J.; Okayasu, Sana; Palomo, Ignacio; Pereira, Laura M.; Riordan, Philip; Santos-Martín, Fernando; Selomane, Odirilwe; Shin, Yunne-Jai; Valle, MireiaScenario analyses have been used in multiple science-policy assessments to better understand complex plausible futures. Scenario archetype approaches are based on the fact that many future scenarios have similar underlying storylines, assumptions, and trends in drivers of change, which allows for grouping of scenarios into typologies, or archetypes, facilitating comparisons between a large range of studies. The use of scenario archetypes in environmental assessments foregrounds important policy questions and can be used to codesign interventions tackling future sustainability issues. Recently, scenario archetypes were used in four regional assessments and one ongoing global assessment within the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES). The aim of these assessments was to provide decision makers with policy-relevant knowledge about the state of biodiversity, ecosystems, and the contributions they provide to people. This paper reflects on the usefulness of the scenario archetype approach within science-policy processes, drawing on the experience from the IPBES assessments. Using a thematic analysis of (a) survey data collected from experts involved in the archetype analyses across IPBES assessments, (b) notes from IPBES workshops, and (c) regional assessment chapter texts, we synthesize the benefits, challenges, and frontiers of applying the scenario archetype approach in a science-policy process. Scenario archetypes were perceived to allow syntheses of large amounts of information for scientific, practice-, and policy-related purposes, streamline key messages from multiple scenario studies, and facilitate communication of them to end users. In terms of challenges, they were perceived as subjective in their interpretation, oversimplifying information, having a limited applicability across scales, and concealing contextual information and novel narratives. Finally, our results highlight what methodologies, applications, and frontiers in archetype-based research should be explored in the future. These advances can assist the design of future large-scale sustainability-related assessment processes, aiming to better support decisions and interventions for equitable and sustainable futures.
- ItemHarnessing insights from social-ecological systems research for monitoring sustainable development(MDPI, 2019) Selomane, Odirilwe; Reyers, Belinda; Biggs, Reinette, 1979-; Hamann, MaikeThe United Nations’ Agenda 2030 marks significant progress towards sustainable development by making explicit the intention to integrate previously separate social, economic and environmental agendas. Despite this intention, the Sustainable Development Goals (SDGs) which were adopted to implement the agenda, are fragmented in their formulation and largely sectoral. We contend that while the design of the SDG monitoring is based on a systems approach, it still misses most of the dynamics and complexity relevant to sustainability outcomes. We propose that insights from the study of social-ecological systems offer a more integrated approach to the implementation of Agenda 2030, particularly the monitoring of progress towards sustainable development outcomes. Using five key features highlighted by the study of social-ecological systems (SESs) relevant to sustainable development: (1) social-ecological feedbacks, (2) resilience, (3) heterogeneity, (4) nonlinearity, and (5) cross-scale dynamics. We analyze the current set of SDG indicators based on these features to explore current progress in making them operational. Our analysis finds that 59% of the indicators account for heterogeneity, 33% for cross-scale dynamics, 23% for nonlinearities, and 18% and 17%, respectively, for social-ecological feedbacks and resilience. Our findings suggest limited use of complex SES science in the current design of SDG monitoring, but combining our findings with recent studies of methods to operationalize SES features suggests future directions for sustainable development monitoring for the current as well as post 2030 set of indicators.
- ItemKey features for more successful place-based sustainability research on social-ecological systems : a Programme on Ecosystem Change and Society (PECS) perspective(Resilience Alliance, 2017) Balvanera, Patricia; Daw, Tim M.; Gardner, Toby A.; Martin-Lopez, Berta; Norstrom, Albert V.; Speranza, Chinwe Ifejika; Spierenburg, Marja; Bennett, Elena M.; Farfan, Michelle; Hamann, Maike; Kittinger, John N.; Luthe, Tobias; Maass, Manuel; Peterson, Garry D.; Perez-Verdin, GustavoThe emerging discipline of sustainability science is focused explicitly on the dynamic interactions between nature and society and is committed to research that spans multiple scales and can support transitions toward greater sustainability. Because a growing body of place-based social-ecological sustainability research (PBSESR) has emerged in recent decades, there is a growing need to understand better how to maximize the effectiveness of this work. The Programme on Ecosystem Change and Society (PECS) provides a unique opportunity for synthesizing insights gained from this research community on key features that may contribute to the relative success of PBSESR. We surveyed the leaders of PECS-affiliated projects using a combination of open, closed, and semistructured questions to identify which features of a research project are perceived to contribute to successful research design and implementation. We assessed six types of research features: problem orientation, research team, and contextual, conceptual, methodological, and evaluative features. We examined the desirable and undesirable aspects of each feature, the enabling factors and obstacles associated with project implementation, and asked respondents to assess the performance of their own projects in relation to these features. Responses were obtained from 25 projects working in 42 social-ecological study cases within 25 countries. Factors that contribute to the overall success of PBSESR included: explicitly addressing integrated social-ecological systems; a focus on solution- and transformation-oriented research; adaptation of studies to their local context; trusted, long-term, and frequent engagement with stakeholders and partners; and an early definition of the purpose and scope of research. Factors that hindered the success of PBSESR included: the complexities inherent to social-ecological systems, the imposition of particular epistemologies and methods on the wider research group, the need for long periods of time to initiate and conduct this kind of research, and power asymmetries both within the research team and among stakeholders. In the self-assessment exercise, performance relating to team and context-related features was ranked higher than performance relating to methodological, evaluation, and problem orientation features. We discuss how these insights are relevant for balancing place-based and global perspectives in sustainability science, fostering more rapid progress toward inter- and transdisciplinary integration, redefining and measuring the success of PBSESR, and facing the challenges of academic and research funding institutions. These results highlight the valuable opportunity that the PECS community provides in helping build a community of practice for PBSESR.
- ItemUsing futures methods to create transformative spaces : visions of a good anthropocene in Southern Africa(Resilience Alliance, 2018) Pereira, Laura M.; Hichert, Tanja; Hamann, Maike; Preiser, Rika; Biggs, Reinette, 1979-The unique challenges posed by the Anthropocene require creative ways of engaging with the future and bringing about transformative change. Envisioning positive futures is a first step in creating a shared understanding and commitment that enables radical transformations toward sustainability in a world defined by complexity, diversity, and uncertainty. However, to create a transformative space in which truly unknowable futures can be explored, new experimental approaches are needed that go beyond merely extrapolating from the present into archetypal scenarios of the future. Here, we present a process of creative visioning where participatory methods and tools from the field of futures studies were combined in a novel way to create and facilitate a transformative space, with the aim of generating positive narrative visions for southern Africa. We convened a diverse group of participants in a workshop designed to develop radically different scenarios of good Anthropocenes, based on existing “seeds” of the future in the present. These seeds are innovative initiatives, practices, and ideas that are present in the world today, but are not currently widespread or dominant. As a result of a carefully facilitated process that encouraged a multiplicity of perspectives, creative immersion, and grappling with deeply held assumptions, four radical visions for southern Africa were produced. Although these futures are highly innovative and exploratory, they still link back to current real-world initiatives and contexts. The key learning that arose from this experience was the importance of the imagination for transformative thinking, the need to capitalize on diversity to push boundaries, and finally, the importance of creating a space that enables participants to engage with emotions, beliefs, and complexity. This method of engagement with the future has the potential to create transformative spaces that inspire and empower people to act toward positive Anthropocene visions despite the complexity of the sustainability challenge.