Browsing by Author "Forsyth, Greg G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemNatural hazards in a changing world : a case for ecosystem-based management(PLoS, 2014) Nel, Jeanne L.; Le Maitre, David C.; Nel, Deon C.; Reyers, Belinda; Archibald, Sally; Van Wilgen, Brian W.; Forsyth, Greg G.; Theron, Andre K.; O’Farrell, Patrick J.; Kahinda, Jean-Marc Mwenge; Engelbrecht, Francois A.; Kapangaziwiri, Evison; Van Niekerk, Lara; Barwell, LaurieCommunities worldwide are increasingly affected by natural hazards such as floods, droughts, wildfires and storm-waves. However, the causes of these increases remain underexplored, often attributed to climate changes or changes in the patterns of human exposure. This paper aims to quantify the effect of climate change, as well as land cover change, on a suite of natural hazards. Changes to four natural hazards (floods, droughts, wildfires and storm-waves) were investigated through scenario-based models using land cover and climate change drivers as inputs. Findings showed that human-induced land cover changes are likely to increase natural hazards, in some cases quite substantially. Of the drivers explored, the uncontrolled spread of invasive alien trees was estimated to halve the monthly flows experienced during extremely dry periods, and also to double fire intensities. Changes to plantation forestry management shifted the 1∶100 year flood event to a 1∶80 year return period in the most extreme scenario. Severe 1∶100 year storm-waves were estimated to occur on an annual basis with only modest human-induced coastal hardening, predominantly from removal of coastal foredunes and infrastructure development. This study suggests that through appropriate land use management (e.g. clearing invasive alien trees, re-vegetating clear-felled forests, and restoring coastal foredunes), it would be possible to reduce the impacts of natural hazards to a large degree. It also highlights the value of intact and well-managed landscapes and their role in reducing the probabilities and impacts of extreme climate events.
- ItemThe recent fire history of the Table Mountain National Park and implications for fire management(AOSIS, 2008) Forsyth, Greg G.; Van Wilgen, Brian W.This paper provides an assessment of fire regimes in the Table Mountain National Park over the past four decades. We compiled a GIS database of all fires between 1970 and 2007 and analysed the fire regime in terms of the frequency, season and size of fires and the relationship between fire occurrence and fire weather. Most fires (90.5% of area burnt) occurred in summer and autumn, the ecologically acceptable season for fires. However, mean fire return intervals declined by 18.1 years, from 31.6 to 13.5 years, between the first and last decades of the record respectively. The area subjected to short (≤ six years) intervals between fires covered > 16% of the park in the last two decades of the record, compared to ~ 4% in the first two decades. A relatively small number of large fires dominated in terms of area burnt. Of the 373 fires recorded, 40 fires > 300 ha burnt 75% of the area, while 216 fires < 25 ha burnt 3.4% of the area. Fires occurred under a wide range of weather conditions, but large fires were restricted to periods of high fire danger. Prescribed burning was a relatively unimportant cause of fires, and most (> 85%) of the area burnt in wildfires. Areas subjected to short fire return intervals should be considered for management interventions. These could include the re-establishment of extirpated fire-sensitive species, the clearing of invasive alien plants and increased precautions for the prevention or rapid suppression of future accidental fires.