Browsing by Author "Ferreira, Roux-Cil"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemAn individual-based model of tsetse fly populations dynamics : modelling an extensive mark-release-recapture experiment(Stellenbosch : Stellenbosch University, 2015-04) Ferreira, Roux-Cil; Hargrove, John; Steel, S. J.; Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.ENGLISH ABSTRACT: Tsetse flies (Glossina spp), native to mid-continental Africa, are the vectors of trypanosomes that causes human (sleeping sickness) and animal (nagana) trypanosomiasis. Vector control plays a major role in alleviating the burden of the disease. Mathematical models of tsetse population dynamics provide insights into how best to manage these control efforts. A major mark-recapture experiment, carried out in Zimbabwe, provided valuable information on tsetse population dynamics, but the analyses so far published could be improved on because not all of the information available on the marking procedure was used. We have constructed an individual-based model that follows the life of individual tsetse flies, their progeny and, in particular, the sequence of occasions on which individual flies were captured and given distinctive marks. We have access to comprehensive data from the tsetse fly mark-release-recapture experiment carried out on Antelope Island, Lake Kariba, Zimbabwe. In order to calibrate or validate the model, we model both the growth of the introduced tsetse population and the mark-recapture process. We have compared the model outputs to the original data and recommend processes that may be followed for model calibration. It is possible to construct an individual-based model that adequately models tsetse fly populations. Whereas the focus of this study has been on modelling the mark-recapture study, the individual-based model could also be used in more general settings to model the growth, and reduction in fly numbers, changes in age structure, species and gender ratios and the acquisition of trypanosome infections by individual flies. This model can thus be used to investigate the effect of various factors on tsetse fly and trypanosome, population dynamics as well as on the performance of various control techniques effecting fly mortality and disease transmission.