Browsing by Author "Ekoume, Fany Pricile"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemImplementation of guidelines on hospital radiopharmacy in low-income settings(Stellenbosch : Stellenbosch University, 2020-12) Ekoume, Fany Pricile; Rubow, Sietske Margarete; Boersma, Hendrikus H.; Stellenbosch University. Faculty of Medicine and Health Sciences. Dept. of Medical Imaging and Clinical Oncology. Nuclear Medicine.ENGLISH SUMMARY : Although radiopharmacy is more than 50 years old, it is still in a stage of rapid development. This dissertation focuses on quality issues in radiopharmacies in developing countries. Guidelines for radiopharmacy practice in many countries prescribe complex facilities, especially air handling units, and extensive quality assurance and documentation requirements. In developing countries, these guidelines are currently not always met. In numerous countries in Africa, enforcement of the international guidelines would lead to closure of radiopharmacies, and consequently, loss of Nuclear Medicine services. The question arises what the consequences of not meeting the requirements of the guidelines are, and if practice can be improved without major expenditure. This study considered certain aspects of Good Radiopharmacy Practice (GRP) recommendations and collected information from both a relatively well-equipped facility at Tygerberg Hospital (TBH) in South Africa, and a more basic radiopharmacy facility at Yaoundé General Hospital in Cameroon (YGH) to investigate the conditions that will ensure safe and effective products. Factors assessed include efficacy and microbial safety of the radiopharmaceuticals, with some comparison to a state-of-the-art Good Manufacturing Practice (GMP) compliant radiopharmacy at the University Medical Centre Groningen (UMCG) in the Netherlands. An adapted version of the Quality Management Audits in Nuclear Medicine (QUANUM) tool, tailored for the radiopharmacy context, was used to determine the status of practice in the two African radiopharmacies. Once the current situation and product quality in these radiopharmacies was determined, basic, low-cost interventions to minimise deficiencies were implemented at YGH and the effects of the interventions were assessed. Where the necessary level of safety and efficacy could not be met with currently available systems despite interventions, this was reported. The efficacy of radiopharmaceuticals depends on their radiochemical purity. As lack of validation of analytical methods was one of the shortcomings noted in the YGH audit, experimentally validating a cost-effective radiochromatography method to be used at YGH was the first step of corrective actions implemented. As the provision of clean air and maintenance of air handling systems and equipment require a large budget, special emphasis was placed in three further chapters of the dissertation on assessment of microbial contamination of products, and measures to ensure sterility of products. At YGH, we reached better control of microbiological air quality. This was achieved by the implementation of simple microbiological air sampling methods, and subsequent introduction of hygienic and procedural improvements. Sterility testing of SPECT radiopharmaceuticals showed a low contamination rate at both TBH and YGH. Nevertheless, preparing radiopharmaceuticals in a well-maintained laminar air flow cabinet is recommended in order to reduce the risk of contamination of products by airborne microorganisms. The serious consequences that could arise from not meeting GRP requirements, include transmission of microbial infection to patients or administering radiochemically impure products. This dissertation presents the first work evaluating an affordable approach of the implementation of GRP in sub-Saharan Africa. It is highly recommended to all radiopharmacies in the developing world to adapt GRP in their context and to implement an optimised quality assurance programme, striving for continuous improvement.