Browsing by Author "Edwards, Shelley"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemConvergent evolution associated with habitat decouples phenotype from phylogeny in a clade of lizards(Public Library of Science, 2012-12-12) Edwards, Shelley; Vanhooydonck, Bieke; Herrel, Anthony; Measey, G. John; Tolley, Krystal A.Convergent evolution can explain similarity in morphology between species, due to selection on a fitness-enhancing phenotype in response to local environmental conditions. As selective pressures on body morphology may be strong, these have confounded our understanding of the evolutionary relationships between species. Within the speciose African radiation of lacertid lizards (Eremiadini), some species occupy a narrow habitat range (e.g. open habitat, cluttered habitat, strictly rupicolous, or strictly psammophilic), which may exert strong selective pressures on lizard body morphology. Here we show that the overall body plan is unrelated to shared ancestry in the African radiation of Eremiadini, but is instead coupled to habitat use. Comprehensive Bayesian and likelihood phylogenies using multiple representatives from all genera (2 nuclear, 2 mitochondrial markers) show that morphologically convergent species thought to represent sister taxa within the same genus are distantly related evolutionary lineages (Ichnotropis squamulosa and Ichnotropis spp.; Australolacerta rupicola and A. australis). Hierarchical clustering and multivariate analysis of morphological characters suggest that body, and head, width and height (stockiness), all of which are ecologically relevant with respect to movement through habitat, are similar between the genetically distant species. Our data show that convergence in morphology, due to adaptation to similar environments, has confounded the assignment of species leading to misidentification of the taxonomic position of I. squamulosa and the Australolacerta species.
- ItemFrog eat frog : exploring variables influencing anurophagy(PeerJ, 2015) Measey, G. John; Vimercati, Giovanni; De Villiers, F. Andre; Mokhatla, Mohlamatsane M.; Davies, Sarah J.; Edwards, Shelley; Altwegg, ResBackground - Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods - We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis. Results - Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data. Large invasive frogs that live in forests with high anuran diversity are most likely to have a higher proportion of anurans in their diet. Conclusions - We confirm the validity of the size hypothesis for anurophagy, but show that there are additional significant variables. The circumstances under which frogs eat frogs are likely to be complex, but our data may help to alert conservationists to the possible dangers of invading frogs entering areas with threatened anuran species.
- ItemPatterns and processes of adaptation in Lacertid lizards to environments in southern Africa(Stellenbosch : Stellenbosch University, 2013-12) Edwards, Shelley; Tolley, Krystal; Mouton, Le Fras; Stellenbosch University. Faculty of Science. Dept. of Botany and Zoology.ENGLISH ABSTRACT: The phenotype of an individual has often been used as the descriminating factor in distinguishing species. However, with the advent of more precise molecular techniques, the genotype of species is increasingly being used as the preferred method in taxonomic classifications. Many taxa have recently been demonstrated to be incongruent in terms of their genetic and morphological groupings, and this may due to the influence that the environment may have on the morphological and functional aspects of a species. Selective pressures often act upon the performance of a species within a particular habitat first, and then selection for the morphological characters that allow for optimal performance occurs. Should genetically disparate species inhabit a particular environment, convergence in morphologies and performance may evolve. Historically, lizard species descriptions were based primarily on external morphologies, and thus misclassfication of species may have occurred due to mistakenly grouping species with convergent morphologies together. In the current dissertation, the links between morphology, performance capacities, diet and behaviour is explored in comparison to the environment and genetic relationships of southern African lacertid lizards. The performance capacities and associated morphological traits were expected to be more closely linked with the environment, and not closely linked with genetic relationships. To investigate these expectations, a multidisciplinary approach was taken, and genetic, morphological and performance analyses were done and compared with dietary behavioural and environmental analyses. In the first chapter, the link between habitat openness and the lizard bauplans is investigated and the presence of convergent morphologies within this group of lizards is uncovered. These convergences are shown to have resulted in misclassification of two lacertid species, and taxonomic revisions within the family are discussed. The second chapter explores the link between performance and associated morphological traits, and the dietary composition of the members of the Nucras genus. The third chapter identifies the link between the predator escape strategies employed by the members of the Meroles genus, and their morphologies and performance capacities. The fourth chapter explores the intraspecific, inter-population differences in morphologies and investigates the link between the morphological groupings and the population genetic groupings within Pedioplanis lineoocellata. The final chapter identifies whether adaptation to a novel habitat can occur over a relatively short period of time, and the morphological traits, functional aspects, and population genetic structure is investigated in conjunction with environmental analyses of vegetation and substrate between the populations of Meroles knoxii. It was concluded that the morphological and functional aspects of the southern African lacertid lizards are more closely related to the environment, particularly the microhabitat structure, than to their genetic relationships, and that future work using this group of lizards should involve a multidisplinary approach as different selective pressures are playing a role in shaping the morphologies and performance capacities of these lizards, compared to those that are acting upon the genotypes of the lizards.
- ItemPhylogeographic variation of the Karoo bush rat, Otomys unisulcatus : a molecular and morphological perspective(Stellenbosch : University of Stellenbosch, 2009-03) Edwards, Shelley; Matthee, Conrad A.; Jansen van Vuuren, Bettine; University of Stellenbosch. Faculty of Science. Dept. of Botany and Zoology.Phylogeographic genetic structure has been documented for a number of southern African terrestrial taxa. Information regarding geographic population genetic structuring in multiple taxa, with differing life histories, can provide insights into abiotic processes such as vicariance. A fragment of the cytochrome b mitochondrial DNA gene of a plains-dwelling species, Otomys unisulcatus, was sequenced and analysed. Two closely related geographic assemblages were found. The first assemblage (lowland group) contains populations from both the eastern and western parts of the species range, and the second comprises populations from the Little Karoo (central group). The lowland group was shown to be in a state of population expansion after a relatively recent mitochondrial DNA (mtDNA) coalescence, while the genetic signature of the central assemblage was characterized by more genetic diversity indicative of an older lineage/genetic refuge. Areas of higher elevation (namely mountain ranges) appeared to be the main factor limiting gene flow between these two groups. Aridification cycles due to glacial maximum periods probably resulted in increased dispersal leading to the widespread distribution of common haplotypes throughout the lowland group. Morphological variation in skull shape and size has been shown to follow environmental clines in some rodents. Geometric morphometric analyses on the ventral and dorsal views of the craniums of O. unisulcatus were utilised to test whether the population groupings obtained in the genetic analyses would be recovered by morphometric analyses. In addition, it was also investigated which of the environmental factors investigated influenced skull shape and size. The genetic groupings were not recovered for either the cranial shape or size. Size variation in the females correlated positively with annual rainfall, and so by proxy with habitat productivity, indicating that females which inhabited areas with lower rainfall would be larger. The significant relationship between females’ centroid sizes and rainfall was thought to be as a result of the increased nutrient requirement by this gender in the production of offspring. The males did not show a significant correlation between any of the environmental variables and centroid size. There was a significant difference between the skull shapes of the genders, further verifying the sexual dimorphism in the species. Three major clusters were found (according to cranium shape) using a Two-Block Partial Least Squares Analysis (2B-PLS), which relate to the biome boundaries within the species’ range. Variations in shape were attributed to the varying needs for strong masticatory muscles resulting from differing diets. The skull shapes of specimens occurring along the escarpment were intermediate between the first two clusters. Cranial shape in the male dorsal view dataset was significantly correlated with the environmental variables block, possibly due to the much lower minimum temperature in the Sutherland population (a population which was not included in the female analyses). It was concluded that differing diets of individuals in the respective biomes influenced the shape of the cranium of both genders. The sexual dimorphism in the cranium shapes may be as a result of the females digging tunnels (using their teeth) underneath the stick nests. Otomys unisulcatus show high levels of phenotypic plasticity throughout the range and it thus appears that the species can adapt fast to the different environmental variables.