Browsing by Author "Dockrell, Hazel M."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemAfrica-wide evaluation of host biomarkers in QuantiFERON supernatants for the diagnosis of pulmonary tuberculosis(Nature Research, 2018-02-08) Chegou, Novel N.; Sutherland, Jayne S.; Namuganga, Anna-Ritah; Corstjens, Paul L. A. M.; Geluk, Annemieke; Gebremichael, Gebremedhin; Mendy, Joseph; Malherbe, Stephanus; Stanley, Kim; Van Der Spuy, Gian D.; Kriel, Magdalena; Loxton, Andre G.; Kriel, Belinda; Simukonda, Felanji; Bekele, Yonas; Sheehama, Jacob A.; Nelongo, Josefina; Van Der Vyver, Marieta; Gebrexabher, Atsbeha; Hailu, Habteyes; Esterhuyse, Maria M.; Rosenkrands, Ida; Aagard, Claus; Kidd, Martin; Kassa, Desta; Mihret, Adane; Howe, Rawleigh; Cliff, Jacqueline M.; Crampin, Amelia C.; Mayanja-Kizza, Harriet; Kaufmann, Stefan H. E.; Dockrell, Hazel M.; Ottenhoff, Tom H. M.; Walzl, Gerhard; AE-TBC consortiumWe investigated host-derived biomarkers that were previously identified in QuantiFERON supernatants, in a large pan-African study. We recruited individuals presenting with symptoms of pulmonary TB at seven peripheral healthcare facilities in six African countries, prior to assessment for TB disease. We then evaluated the concentrations of 12 biomarkers in stored QuantiFERON supernatants using the Luminex platform. Based on laboratory, clinical and radiological findings and a pre-established algorithm, participants were classified as TB disease or other respiratory diseases(ORD). Of the 514 individuals included in the study, 179(34.8%) had TB disease, 274(51.5%) had ORD and 61(11.5%) had an uncertain diagnosis. A biosignature comprising unstimulated IFN-γ, MIP-1β, TGF-α and antigen-specific levels of TGF-α and VEGF, identified on a training sample set (n = 311), validated by diagnosing TB disease in the test set (n = 134) with an AUC of 0.81(95% CI, 0.76–0.86), corresponding to a sensitivity of 64.2%(95% CI, 49.7–76.5%) and specificity of 82.7%(95% CI, 72.4–89.9%). Host biomarkers detected in QuantiFERON supernatants can contribute to the diagnosis of active TB disease amongst people presenting with symptoms requiring investigation for TB disease, regardless of HIV status or ethnicity in Africa.
- ItemAnalysis of host responses to secreted, latent and reactivation Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa(Public Library of Science, 2013-09-10) Sutherland, Jayne S.; Lalor, Maeve K.; Black, Gillian F.; Ambrose, Lyn R.; Loxton, Andre G.; Chegou, Novel N.; Kassa, Desta; Mihret, Adane; Howe, Rawleigh; Mayanja-Kizza, Harriet; Gomez, Marie P.; Donkor, Simon; Franken, Kees; Boom, W. Henry; Thiel, Bonnie A.; Crampin, Amelia C.; Hanekom, Willem; Klein, Michel R.; Parida, Shreemanta K.; Ota, Martin; Walzl, Gerhard; Ottenhoff, Tom H. M.; Dockrell, Hazel M.; Kaufmann, Stefan H. E.Background: Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. Methods: We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. Results: There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST- and TST+ contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST+ contacts (LTBI) compared to TB and TST- contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. Conclusions: Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials.
- ItemDiabetes mellitus among pulmonary tuberculosis patients from 4 tuberculosis-endemic countries : the TANDEM study(Oxford University Press, 2019-04) Ugarte-Gil, Cesar; Alisjahbana, Bachti; Ronacher, Katharina; Lelia Riza, Anca; Koesoemadinata, Raspati C.; Malherbe, Stephanus T.; Cioboata, Ramona; Llontop, Juan Carlos; Kleynhans, Leanie; Lopez, Sonia; Santoso, Prayudi; Marius, Ciontea; Villaizan, Katerine; Ruslami, Rovina; Walzl, Gerhard; Panduru, Nicolae Mircea; Dockrell, Hazel M.; Hill, Philip C.; Allister, Susan Mc; Pearson, Fiona; Moore, David A. J.; Critchley, Julia A.; van Crevel, ReinoutBackground Diabetes mellitus (DM) increases active tuberculosis (TB) risk and worsens TB outcomes, jeopardizing TB control especially in TB-endemic countries with rising DM prevalence rates. We assessed DM status and clinical correlates in TB patients across settings in Indonesia, Peru, Romania, and South Africa. Methods Age-adjusted DM prevalence was estimated using laboratory glycated hemoglobin (HbA1c) or fasting plasma glucose in TB patients. Detailed and standardized sociodemographic, anthropometric, and clinical measurements were made. Characteristics of TB patients with or without DM were compared using multilevel mixed-effect regression models with robust standard errors. Results Of 2185 TB patients (median age 36.6 years, 61.2% male, 3.8% human immunodeficiency virus–infected), 12.5% (267/2128) had DM, one third of whom were newly diagnosed. Age-standardized DM prevalence ranged from 10.9% (South Africa) to 19.7% (Indonesia). Median HbA1c in TB–DM patients ranged from 7.4% (Romania) to 11.3% (Indonesia). Compared to those without DM, TB–DM patients were older and had a higher body mass index (BMI) (P value < .05). Compared to those with newly diagnosed DM, TB patients with diagnosed DM had higher BMI and HbA1c, less severe TB, and more frequent comorbidities, DM complications, and hypertension (P value < .05). Conclusions We show that DM prevalence and clinical characteristics of TB–DM vary across settings. Diabetes is primarily known but untreated, hyperglycemia is often severe, and many patients with TB–DM have significant cardiovascular disease risk and severe TB. This underlines the need to improve strategies for better clinical management of combined TB and DM.
- ItemImpact of intermediate hyperglycaemia as well as diabetes on immune dysfunction in tuberculosis(Oxford University Press, 2020-01) Eckold, Clare; Kumar, Vinod; Weiner, January; Alisjahbana, Bachti; Riza, Anca-Lelia; Ronacher, Katharina; Coronel, Jorge; Kerry-Barnard, Sarah; Malherbe, Stephanus T.; Kleynhans, Leanie; Stanley, Kim; Ruslami, Rovina; Ioana, Mihai; Ugarte-Gil, Cesar; Walzl, Gerhard; van Crevel, Reinout; Wijmenga, Cisca; Critchley, Julia A.; Dockrell, Hazel M.; Cliff, Jacqueline M.Background: People with diabetes have an increased risk of developing active tuberculosis (TB) and are more likely to have poor TB-treatment outcomes, which may impact on control of TB as the prevalence of diabetes is increasing worldwide. Blood transcriptomes are altered in patients with active TB relative to healthy individuals. The effects of diabetes and intermediate hyperglycemia (IH) on this transcriptomic signature were investigated to enhance understanding of immunological susceptibility in diabetes-TB comorbidity. Methods: Whole blood samples were collected from active TB patients with diabetes (glycated hemoglobin [HbA1c] ≥6.5%) or IH (HbA1c = 5.7% to <6.5%), TB-only patients, and healthy controls in 4 countries: South Africa, Romania, Indonesia, and Peru. Differential blood gene expression was determined by RNA-seq (n = 249). Results: Diabetes increased the magnitude of gene expression change in the host transcriptome in TB, notably showing an increase in genes associated with innate inflammatory and decrease in adaptive immune responses. Strikingly, patients with IH and TB exhibited blood transcriptomes much more similar to patients with diabetes-TB than to patients with only TB. Both diabetes-TB and IH-TB patients had a decreased type I interferon response relative to TB-only patients. Conclusions: Comorbidity in individuals with both TB and diabetes is associated with altered transcriptomes, with an expected enhanced inflammation in the presence of both conditions, but also reduced type I interferon responses in comorbid patients, suggesting an unexpected uncoupling of the TB transcriptome phenotype. These immunological dysfunctions are also present in individuals with IH, showing that altered immunity to TB may also be present in this group. The TB disease outcomes in individuals with IH diagnosed with TB should be investigated further.
- ItemMapping of mycobacterium tuberculosis complex genetic diversity profiles in Tanzania and Other African countries(Public Library of Science, 2016) Mbug, Erasto V.; Katale, Bugwesa Z.; Streicher, Elizabeth M.; Keyyu, Julius D.; Kendall, Sharon L.; Dockrell, Hazel M.; Michel, Anita L.; Rweyemamu, Mark M.; Warren, Robin M.; Matee, Mecky I.; Van Helden, Paul D.; Couvin, David; Rastog, NalinThe aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity.
- ItemOne Health approach in the prevention and control of mycobacterial infections in Tanzania : lessons learnt and future perspectives(BMC (part of Springer Nature), 2019-11-27) Katale, Bugwesa Z.; Mbugi, Erasto V.; Keyyu, Julius D.; Fyumagwa, Robert D.; Rweyemamu, Mark M.; Van Helden, Paul D.; Dockrell, Hazel M.; Matee, Mecky I.Background: One Health (OH) is an integrated approach, formed inclusive of using multiple disciplines to attain optimal health for humans, animals, and the environment. The increasing proximity between humans, livestock, and wildlife, and its role in the transmission dynamics of mycobacterial infections, necessitates an OH approach in the surveillance of zoonotic diseases. The challenge remains as humans, livestock, and wildlife share resources and interact at various interfaces. Therefore, this review explores the potential of the OH approach to understand the impact of mycobacterial infections in Tanzania in terms of lessons learnt and future perspectives. Materials and methods: Available literature on OH and mycobacterial infections in Tanzania was searched in PubMed, Google Scholar, and Web of Science. Articles on mycobacterial infections in Tanzania, published between 1997 to 2017, were retrieved to explore the information on OH and mycobacterial infections. Main body: The studies conducted in Tanzania had have reported a wide diversity of mycobacterial species in humans and animals, which necessitates an OH approach in surveillance of diseases for better control of infectious agents and to safeguard the health of humans and animals. The close proximity between humans and animals increases the chances of inter-specific transmission of infectious pathogens, including drug-resistant mycobacteria. In an era where HIV co-infection is also the case, opportunistic infection by environmental non-tuberculous mycobacteria (NTM), commonly known as mycobacteria other than tuberculosis (MOTT) may further exacerbate the impact of drug resistance. NTM from various sources have greatest potential for diverse strains among which are resistant strains due to continued evolutional changes. Conclusion: A collaborative interdisciplinary approach among professionals could help in solving the threats posed by mycobacterial infections to public health, particularly by the spread of drug-resistant strains.
- ItemA serum circulating miRNA signature for short-term risk of progression to active tuberculosis among household contacts(Frontiers Media, 2018) Duffy, Fergal J.; Thompson, Ethan; Downing, Katrina; Suliman, Sara; Mayanja-Kizza, Harriet; Boom, W. Henry; Thiel, Bonnie; Weiner III, January; Kaufmann, Stefan H. E.; Dover, Drew; Tabb, David L.; Dockrell, Hazel M.; Ottenhoff, Tom H. M.; Tromp, Gerard; Scriba, Thomas J.; Zak, Daniel E.; Walzl, Gerhard; GC6-74 ConsortiumENGLISH ABSTRACT: Biomarkers that predict who among recently Mycobacterium tuberculosis (MTB)-exposed individuals will progress to active tuberculosis are urgently needed. Intracellular microRNAs (miRNAs) regulate the host response to MTB and circulating miRNAs (c-miRNAs) have been developed as biomarkers for other diseases. We performed machine-learning analysis of c-miRNA measurements in the serum of adult household contacts (HHCs) of TB index cases from South Africa and Uganda and developed a c-miRNA-based signature of risk for progression to active TB. This c-miRNA-based signature significantly discriminated HHCs within 6 months of progression to active disease from HHCs that remained healthy in an independent test set [ROC area under the ROC curve (AUC) 0.74, progressors < 6 Mo to active TB and ROC AUC 0.66, up to 24 Mo to active TB], and complements the predictions of a previous cellular mRNA-based signature of TB risk.
- ItemSpecies diversity of non-tuberculous mycobacteria isolated from humans, livestock and wildlife in the Serengeti ecosystem, Tanzania(BioMed Central, 2014-11-18) Katale, Bugwesa Z.; Mbugi, Erasto V.; Botha, Louise; Keyyu, Julius D.; Kendall, Sharon; Dockrell, Hazel M.; Michel, Anita L.; Kazwala, Rudovick R.; Rweyemamu, Mark M.; Van Helden, Paul; Matee, Mecky I.Background: Non-tuberculous mycobacteria (NTM), which are ubiquitous micro-organisms occurring in humans, animals and the environment, sometimes receive public health and veterinary attention as opportunistic disease-causing agents. In Tanzania, there is limited information regarding the diversity of NTM species, particularly at the human-livestock-wildlife interface such as the Serengeti ecosystem, where potential for cross species infection or transmission may exist. Methods: Mycobacterial DNA was extracted from cultured isolates obtained from sputum samples of 472 suspect TB patients and 606 tissues from wildlife species and indigenous cattle. Multiplex PCR was used to differentiate NTM from Mycobacterium tuberculosis complex (MTBC) members. NTM were further identified to species level by nucleotide sequencing of the 16S rRNA gene. Results: A total of fifty five (55) NTM isolates representing 16 mycobacterial species and 5 isolates belonging to the MTBC were detected. Overall, Mycobacterium intracellulare which was isolated from human, cattle and wildlife, was the most frequently isolated species (20 isolates, 36.4%) followed by M. lentiflavum (11 isolates, 20%), M. fortuitum (4 isolates, 7.3%) and M. chelonae-abscessus group (3 isolates, 5.5%). In terms of hosts, 36 isolates were from cattle and 12 from humans, the balance being found in various wildlife species. Conclusion: This study reveals a diversity of NTM species in the Serengeti ecosystem, some of which have potential for causing disease in animals and humans. The isolation of NTM from tuberculosis-like lesions in the absence of MTBC calls for further research to elucidate their actual role in causing disease. We are also suggesting a one health approach in identifying risk factors for and possible transmission mechanisms of the NTM in the agro-pastoral communities in the Serengeti ecosystem.
- ItemTBVAC2020 : advancing tuberculosis vaccines from discovery to clinical development(Frontiers, 2017-10) Kaufmann, Stefan H. E.; Dockrell, Hazel M.; Drager, Nick; Ho, Mei Mei; McShane, Helen; Neyrolles, Olivier; Ottenhoff, Tom H. M.; Patel, Brij; Roordink, Danielle; Spertini, Francois; Stenger, Steffen; Thole, Jelle; Verreck, Frank A. W.; Williams, Ann; Consortium, TBVAC2020TBVAC2020 is a research project supported by the Horizon 2020 program of the European Commission (EC). It aims at the discovery and development of novel tuberculosis (TB) vaccines from preclinical research projects to early clinical assessment. The project builds on previous collaborations from 1998 onwards funded through the EC framework programs FP5, FP6, and FP7. It has succeeded in attracting new partners from outstanding laboratories from all over the world, now totaling 40 institutions. Next to the development of novel vaccines, TB biomarker development is also considered an important asset to facilitate rational vaccine selection and development. In addition, TBVAC2020 offers portfolio management that provides selection criteria for entry, gating, and priority settings of novel vaccines at an early developmental stage. The TBVAC2020 consortium coordinated by TBVI facilitates collaboration and early data sharing between partners with the common aim of working toward the development of an effective TB vaccine. Close links with funders and other consortia with shared interests further contribute to this goal.