Browsing by Author "Dludla, Phiwayinkosi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAspalathin-rich green rooibos extract lowers LDL-cholesterol and oxidative status in high-fat diet-induced diabetic vervet monkeys(2019-05-02) Orlando, Patrick; Chellan, Nireshni; Louw, Johan; Tiano, Luca; Cirilli, Ilenia; Dludla, Phiwayinkosi; Joubert, Elizabeth; Muller, Christo J. F.Type 2 diabetic patients possess a two to four-fold-increased risk for cardiovascular diseases (CVD). Hyperglycemia, oxidative stress associated with endothelial dysfunction and dyslipidemia are regarded as pro-atherogenic mechanisms of CVD. In this study, high-fat diet-induced diabetic and non-diabetic vervet monkeys were treated with 90 mg/kg of aspalathin-rich green rooibos extract (Afriplex GRT) for 28 days, followed by a 1-month wash-out period. Supplementation showed improvements in both the intravenous glucose tolerance test (IVGTT) glycemic area under curve (AUC) and total cholesterol (due to a decrease of the low-density lipoprotein [LDL]) values in diabetics, while non-diabetic monkeys benefited from an increase in high-density lipoprotein (HDL) levels. No variation of plasma coenzyme Q10 (CoQ10) were found, suggesting that the LDL-lowering effect of Afriplex GRT could be related to its ability to modulate the mevalonate pathway differently from statins. Concerning the plasma oxidative status, a decrease in percentage of oxidized CoQ10 and circulating oxidized LDL (ox-LDL) levels after supplementation was observed in diabetics. Finally, the direct correlation between the amount of oxidized LDL and total LDL concentration, and the inverse correlation between ox-LDL and plasma CoQ10 levels, detected in the diabetic monkeys highlighted the potential cardiovascular protective role of green rooibos extract. Taken together, these findings suggest that Afriplex GRT could counteract hyperglycemia, oxidative stress and dyslipidemia, thereby lowering fundamental cardiovascular risk factors associated with diabetes.
- ItemLinking LOXL2 to Cardiac Interstitial Fibrosis(MDPI, 2020-08) Erasmus, Melisse; Samodien, Ebrahim; Lecour, Sandrine; Cour, Martin; Lorenzo, Oscar; Dludla, Phiwayinkosi; Pheiffer, Carmen; Johnson, RabiaCardiovascular diseases (CVDs) are the leading causes of death worldwide. CVD pathophysiology is often characterized by increased stiffening of the heart muscle due to fibrosis, thus resulting in diminished cardiac function. Fibrosis can be caused by increased oxidative stress and inflammation, which is strongly linked to lifestyle and environmental factors such as diet, smoking, hyperglycemia, and hypertension. These factors can affect gene expression through epigenetic modifications. Lysyl oxidase like 2 (LOXL2) is responsible for collagen and elastin cross-linking in the heart, and its dysregulation has been pathologically associated with increased fibrosis. Additionally, studies have shown that, LOXL2 expression can be regulated by DNA methylation and histone modification. However, there is a paucity of data on LOXL2 regulation and its role in CVD. As such, this review aims to gain insight into the mechanisms by which LOXL2 is regulated in physiological conditions, as well as determine the downstream effectors responsible for CVD development.
- ItemPharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension : a mini review(Springer, 2019) Johnson, Rabia; Dludla, Phiwayinkosi; Mabhida, Sihle; Benjeddou, Mongi; Louw, Johan; February, FaghriENGLISH ABSTRACT: Blood pressure (BP) is a complex trait that is regulated by multiple physiological pathways and include but is not limited to extracellular fluid volume homeostasis, cardiac contractility, and vascular tone through renal, neural, or endocrine systems. Uncontrolled hypertension (HTN) has been associated with an increased mortality risk. Therefore, understanding the genetics that underpins and influence BP regulation will have a major impact on public health. Moreover, uncontrolled HTN has been linked to inter-individual variation in the drugs’ response and this has been associated with an individual’s genetics architecture. However, the identification of candidate genes that underpin the genetic basis of HTN remains a major challenge. To date, few variants associated with inter-individual BP regulation have been identified and replicated. Research in this field has accelerated over the past 5 years as a direct result of on-going genome-wide association studies (GWAS) and the progress in the identification of rare gene variants and mutations, epigenetic markers, and the regulatory pathways involved in the pathophysiology of BP. In this review we describe and enhance our current understanding of how genetic variants account for the observed variability in BP response in patients on first-line antihypertensive drugs, amlodipine and hydrochlorothiazide.