Browsing by Author "De Villiers, Dawie"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemSynthetic porous materials : a study of adsorption selectivity and structure-property relationships(2015-12) De Villiers, Dawie; Barbour, Leonard J.; Esterhuysen, Catharine; Stellenbosch University. Faculty of Science. Dept. of Chemistry and Polymer Science.ENGLISH ABSTRACT: The aim of this thesis was to study structure-property relationships in porous materials using various adapted analytical techniques and in-house instruments. The thesis is divided into two sections, and the first section of work constitutes the majority of the thesis. The first section of work deals with the theoretical versus experimental classification of sorption selectivity in porous compounds. A transiently porous metallocycle that can adsorb acetylene and carbon dioxide served as a model host for this experiment. A volumetric sorption instrument had to be constructed to carry out sorption with acetylene. Even though the metallocycle should theoretically be selective for acetylene over carbon dioxide based on single-gas sorption isotherms, this was not the case during the sorption of a mixture of the two gases. Furthermore, high-pressure single-crystal diffraction was carried out utilising an in-house environmental gas cell, and structural elucidation indicated that both acetylene and carbon dioxide coexist in a single cavity of the host. Additional complementary techniques are discussed that were used to confirm that both gases are present in a single host cavity. The techniques included infrared spectroscopy as well as high-pressure florescence and Raman spectroscopy, which had to be conducted with a specially designed pressure vessel and with adapted instrumentation. Finally, density functional theory calculations were employed to explain how host-guest and guest-guest interactions lead to the change in adsorption selectivity. It is concluded that researchers need to show experimentally that a compound is selective for the adsorption of a specific gas, because theoretical models are not always accurate. The second part of this work focuses on a fundamental study of the structure-property relationships in a porous hydrogen-bonded organic framework. The section starts off by exploring the activation conditions and thermal stability of the framework. This is followed by an exploration of a possible phase transformation or thermal expansion in the framework, but neither of these occurred. Thereafter, an extended study of the framework’s sorption behaviour with various gases is discussed. Then, a structural study of its solvated phase is used to explain the framework’s stability. Finally, a novel analytical method is introduced, and two examples are used to demonstrate why the instrument is useful in the field of supramolecular chemistry. The chapter is concluded by stating the importance these fundamental studies, as well the development of new analytical techniques.