Browsing by Author "De Bruyn, Rochelle"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDetermining the distribution and genetic diversity of Coguvirus eburi in South African citrus and development of a citrus-infecting coguvirus detection assay(Stellenbosch : Stellenbosch University, 2022-04) De Bruyn, Rochelle; Maree, H. J.; Bester, Rachelle; Cook, Glynnis; Stellenbosch University. Faculty of AgriSciences. Dept. of Genetics. Institute for Plant Biotechnology.ENGLISH ABSTRACT: Citrus virus A (CiVA) is a novel negative-sense single-stranded RNA virus discovered with high- throughput sequencing (HTS). CiVA is classified as a member of the species Coguvirus eburi and is closely related to a member of the species Citrus coguvirus, named citrus concave gum-associated virus (CCGaV). CCGaV and CiVA are members of the genus Coguvirus in the family Phenuiviridae in the order Bunyavirales. CiVA has a bipartite genome encoding an RNA-dependant RNA polymerase (RdRp) on RNA 1 and a nucleocapsid protein (NP) and a putative movement protein (MP) on the ambisense RNA 2. The confirmed presence of CiVA in cultivars of grapefruit (Citrus paradisi Macf.), sweet orange (C. sinensis (L.) Osb.) and clementine (C. reticulata Blanco) in South Africa initiated a study to determine the distribution, genetic diversity and symptom association of CiVA in three provinces and seven citrus production regions. CiVA was detected in six citrus production regions in symptomatic and asymptomatic sweet orange trees. In three citrus production regions, CiVA was detected in sweet orange trees displaying a fruit rind symptom similar to citrus impietratura. CiVA was also detected in grapefruit trees with typical citrus impietratura symptoms and in symptomless clementine trees. The three encoded gene regions of CiVA were Sanger sequenced to investigate the genetic diversity between isolates from the six citrus production regions and three citrus species. Phylogenetic analysis of the nucleotide sequences (nt) of each encoded gene region was performed through the construction of Maximum-likelihood (ML) phylogenetic trees and nucleotide identity matrices. Phylogenetic analysis and nt identity matrices indicated a higher genetic diversity within the NP than the MP and RdRp. More genetic diversity was observed between isolates from the three citrus species than between isolates from the different citrus production regions. A real-time RT-PCR detection assay targeting the RdRp was also developed to simultaneously detect CiVA and CCGaV. Two cDNA synthesis methods for reverse transcription (RT) were compared and a degenerate, dual priming oligo (DPO) reverse primer was designed to improve the specificity of the detection assay. Two PCR assays that utilised the DPO reverse primer with two different forward primers were compared. The cDNA synthesis method and choice of primer pair had an influence on the amplification efficiency, specificity and sensitivity of the real-time detection assay. A tissue specificity assay was also performed and CiVA was detected throughout the plant in leaf midribs, leaf lamina, green bark and roots. Lower Ct values were consistently associated with the green bark and leaf midribs. The detection assay was implemented for pathogen screening within the Citrus Improvement Scheme (CIS) of South Africa, ensuring the release of CiVA free budwood to the citrus industry.
- ItemTowards the validation of high-throughput sequencing (HTS) for routine plant virus diagnostics: measurement of variation linked to HTS detection of citrus viruses and viroids(BioMed Central, 2021-03-22) Bester, Rachelle; Cook, Glynnis; Breytenbach, Johannes H. J.; Steyn, Chanel; De Bruyn, Rochelle; Maree, Hans J.Background: High-throughput sequencing (HTS) has been applied successfully for virus and viroid discovery in many agricultural crops leading to the current drive to apply this technology in routine pathogen detection. The validation of HTS-based pathogen detection is therefore paramount. Methods: Plant infections were established by graft inoculating a suite of viruses and viroids from established sources for further study. Four plants (one healthy plant and three infected) were sampled in triplicate and total RNA was extracted using two different methods (CTAB extraction protocol and the Zymo Research Quick-RNA Plant Miniprep Kit) and sent for Illumina HTS. One replicate sample of each plant for each RNA extraction method was also sent for HTS on an Ion Torrent platform. The data were evaluated for biological and technical variation focussing on RNA extraction method, platform used and bioinformatic analysis. Results: The study evaluated the influence of different HTS protocols on the sensitivity, specificity and repeatability of HTS as a detection tool. Both extraction methods and sequencing platforms resulted in significant differences between the data sets. Using a de novo assembly approach, complemented with read mapping, the Illumina data allowed a greater proportion of the expected pathogen scaffolds to be inferred, and an accurate virome profile was constructed. The complete virome profile was also constructed using the Ion Torrent data but analyses showed that more sequencing depth is required to be comparative to the Illumina protocol and produce consistent results. The CTAB extraction protocol lowered the proportion of viroid sequences recovered with HTS, and the Zymo Research kit resulted in more variation in the read counts obtained per pathogen sequence. The expression profiles of reference genes were also investigated to assess the suitability of these genes as internal controls to allow for the comparison between samples across different protocols. Conclusions: This study highlights the need to measure the level of variation that can arise from the different variables of an HTS protocol, from sample preparation to data analysis. HTS is more comprehensive than any assay previously used, but with the necessary validations and standard operating procedures, the implementation of HTS as part of routine pathogen screening practices is possible.