Browsing by Author "Cloete, Ruben"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemAnalyses of HIV-1 integrase sequences prior to South African national HIV-treatment program and availability of integrase inhibitors in Cape Town, South Africa(Nature Publishing Group, 2018) Brado, Dominik; Obasa, Adetayo Emmanuel; Ikomey, George Mondinde; Cloete, Ruben; Singh, Kamalendra; Engelbrecht, Susan; Neogi, Ujjwal; Jacobs, Graeme BrendonENGLISH ABSTRACT: HIV-Integrase (IN) has proven to be a viable target for highly specific HIV-1 therapy. We aimed to characterize the HIV-1 IN gene in a South African context and identify resistance-associated mutations (RAMs) against available first and second generation Integrase strand-transfer inhibitors (InSTIs). We performed genetic analyses on 91 treatment-naïve HIV-1 infected patients, as well as 314 treatment-naive South African HIV-1 IN-sequences, downloaded from Los Alamos HIV Sequence Database. Genotypic analyses revealed the absence of major RAMs in the cohort collected before the broad availability of combination antiretroviral therapy (cART) and INSTI in South Africa, however, occurred at a rate of 2.85% (9/314) in database derived sequences. RAMs were present at IN-positions 66, 92, 143, 147 and 148, all of which may confer resistance to Raltegravir (RAL) and Elvitegravir (EVG), but are unlikely to affect second-generation Dolutegravir (DTG), except mutations in the Q148 pathway. Furthermore, protein modeling showed, naturally occurring polymorphisms impact the stability of the intasome-complex and therefore may contribute to an overall potency against InSTIs. Our data suggest the prevalence of InSTI RAMs, against InSTIs, is low in South Africa, but natural polymorphisms and subtype-specific differences may influence the effect of individual treatment regimens.
- ItemComparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and apparent absence of selective constraints(Public Library of Science, 2012-04-04) McEvoy, Christopher R. E.; Cloete, Ruben; Muller, Borna; Schurch, Anita C.; Van Helden, Paul D.; Gagneux, Sebastien; Warren, Robin M.; Gey van Pittius, Nicolaas C.Mycobacterium tuberculosis complex (MTBC) genomes contain 2 large gene families termed pe and ppe. The function of pe/ppe proteins remains enigmatic but studies suggest that they are secreted or cell surface associated and are involved in bacterial virulence. Previous studies have also shown that some pe/ppe genes are polymorphic, a finding that suggests involvement in antigenic variation. Using comparative sequence analysis of 18 publicly available MTBC whole genome sequences, we have performed alignments of 33 pe (excluding pe_pgrs) and 66 ppe genes in order to detect the frequency and nature of genetic variation. This work has been supplemented by whole gene sequencing of 14 pe/ppe (including 5 pe_pgrs) genes in a cohort of 40 diverse and well defined clinical isolates covering all the main lineages of the M. tuberculosis phylogenetic tree. We show that nsSNP's in pe (excluding pgrs) and ppe genes are 3.0 and 3.3 times higher than in non-pe/ppe genes respectively and that numerous other mutation types are also present at a high frequency. It has previously been shown that non-pe/ppe M. tuberculosis genes display a remarkably low level of purifying selection. Here, we also show that compared to these genes those of the pe/ppe families show a further reduction of selection pressure that suggests neutral evolution. This is inconsistent with the positive selection pressure of “classical” antigenic variation. Finally, by analyzing such a large number of genes we were able to detect large differences in mutation type and frequency between both individual genes and gene sub-families. The high variation rates and absence of selective constraints provides valuable insights into potential pe/ppe function. Since pe/ppe proteins are highly antigenic and have been studied as potential vaccine components these results should also prove informative for aspects of M. tuberculosis vaccine design.
- ItemDrug resistance mutations against protease, reverse transcriptase and integrase inhibitors in people living with HIV-1 receiving boosted protease inhibitors in South Africa(Frontiers Media, 2020) Obasa, Adetayo Emmanuel; Mikasi, Sello Given; Brado, Dominik; Cloete, Ruben; Singh, Kamlendra; Neogi, Ujjwal; Jacobs, Graeme BrendonThe South African national combination antiretroviral therapy (cART) roll-out program started in 2006, with over 4.4 million people accessing treatment since it was first introduced. HIV-1 drug resistance can hamper the success of cART. This study determined the patterns of HIV-1 drug-resistance associated mutations (RAMs) in People Living with HIV-1 (PLHIV-1). Receiving first (for children below 3 years of age) and second-line (for adults) cART regimens in South Africa. During 2017 and 2018, 110 patients plasma samples were selected, 96 samples including those of 17 children and infants were successfully analyzed. All patients were receiving a boosted protease inhibitor (bPI) as part of their cART regimen. The viral sequences were analyzed for RAMs through genotypic resistance testing. We performed genotypic resistance testing (GRT) for Protease inhibitors (PIs), Reverse transcriptase inhibitors (RTIs) and Integrase strand transfer inhibitors (InSTIs). Viral sequences were subtyped using REGAv3 and COMET. Based on the PR/RT sequences, HIV-1 subtypes were classified as 95 (99%) HIV-1 subtype C (HIV-1C) while one sample as 02_AG. Integrase sequencing was successful for 89 sequences, and all the sequences were classified as HIV-1C (99%, 88/89) except one sequence classified CRF02_AG, as observed in PR/RT. Of the 96 PR/RT sequences analyzed, M184V/I (52/96; 54%) had the most frequent RAM nucleoside reverse transcriptase inhibitor (NRTI). The most frequent non-nucleoside reverse transcriptase inhibitor (NNRTI) RAM was K103N/S (40/96, 42%). Protease inhibitor (PI) RAMs M46I and V82A were present in 12 (13%) of the sequences analyzed. Among the InSTI major RAM two (2.2%) sequences have Y143R and T97A mutations while one sample had T66I. The accessory RAM E157Q was identified in two (2.2%). The data indicates that the majority of the patients failed on bPIs didn’t have any mutation; therefore adherence could be major issue in these groups of individuals. We propose continued viral load monitoring for better management of infected PLHIV.
- ItemDrug resistance mutations against protease, reverse transcriptase and integrase inhibitors in people living with HIV-1 receiving boosted protease inhibitors in South Africa(Frontiers Media, 2020-03) Obasa, Adetayo Emmanuel; Mikasi, Sello Given; Brado, Dominik; Cloete, Ruben; Singh, Kamlendra; Neogi, Ujjwal; Jacobs, Graeme Brendon; Pathology: Medical VirologyThe South African national combination antiretroviral therapy (cART) roll-out program started in 2006, with over 4.4 million people accessing treatment since it was first introduced. HIV-1 drug resistance can hamper the success of cART. This study determined the patterns of HIV-1 drug-resistance associated mutations (RAMs) in People Living with HIV-1 (PLHIV-1). Receiving first (for children below 3 years of age) and second-line (for adults) cART regimens in South Africa. During 2017 and 2018, 110 patients plasma samples were selected, 96 samples including those of 17 children and infants were successfully analyzed. All patients were receiving a boosted protease inhibitor (bPI) as part of their cART regimen. The viral sequences were analyzed for RAMs through genotypic resistance testing. We performed genotypic resistance testing (GRT) for Protease inhibitors (PIs), Reverse transcriptase inhibitors (RTIs) and Integrase strand transfer inhibitors (InSTIs). Viral sequences were subtyped using REGAv3 and COMET. Based on the PR/RT sequences, HIV-1 subtypes were classified as 95 (99%) HIV-1 subtype C (HIV-1C) while one sample as 02_AG. Integrase sequencing was successful for 89 sequences, and all the sequences were classified as HIV-1C (99%, 88/89) except one sequence classified CRF02_AG, as observed in PR/RT. Of the 96 PR/RT sequences analyzed, M184V/I (52/96; 54%) had the most frequent RAM nucleoside reverse transcriptase inhibitor (NRTI). The most frequent non-nucleoside reverse transcriptase inhibitor (NNRTI) RAM was K103N/S (40/96, 42%). Protease inhibitor (PI) RAMs M46I and V82A were present in 12 (13%) of the sequences analyzed. Among the InSTI major RAM two (2.2%) sequences have Y143R and T97A mutations while one sample had T66I. The accessory RAM E157Q was identified in two (2.2%). The data indicates that the majority of the patients failed on bPIs didn’t have any mutation; therefore adherence could be major issue in these groups of individuals. We propose continued viral load monitoring for better management of infected PLHIV.
- ItemInteraction analysis of statistically enriched mutations identified in Cameroon recombinant subtype CRF02_AG that can influence the development of Dolutegravir drug resistance mutations(BMC (part of Springer Nature), 2021-04-23) Mikasi, Sello G.; Isaacs, Darren; Chitongo, Rumbidzai; Ikomey, George M.; Jacobs, Graeme B.; Cloete, RubenBackground: The Integrase (IN) strand transfer inhibitor (INSTI), Dolutegravir (DTG), has been given the green light to form part of first-line combination antiretroviral therapy (cART) by the World Health Organization (WHO). DTG containing regimens have shown a high genetic barrier against HIV-1 isolates carrying specific resistance mutations when compared with other class of regimens. Methods: We evaluated the HIV-1 CRF02_AG IN gene sequences from Cameroon for the presence of resistanceassociated mutations (RAMs) against INSTIs and naturally occurring polymorphisms (NOPs), using study sequences (n = 20) and (n = 287) sequences data derived from HIV Los Alamos National Laboratory database. The possible impact of NOPs on protein structure caused by HIV-1 CRF02_AG variations was addressed within the context of a 3D model of the HIV-1 IN complex and interaction analysis was performed using PyMol to validate DTG binding to the Wild type and seven mutant structures. Results: We observed 12.8% (37/287) sequences to contain RAMs, with only 1.0% (3/287) of the sequences having major INSTI RAMs: T66A, Q148H, R263K and N155H. Of these,11.8% (34/287) of the sequences contained five different IN accessory mutations; namely Q95K, T97A, G149A, E157Q and D232N. NOPs occurred at a frequency of 66% on the central core domain (CCD) position, 44% on the C-terminal domain (CTD) position and 35% of the Nterminal domain (NTD) position. The interaction analysis revealed that DTG bound to DNA, 2MG ions and DDE motif residues for T66A, T97A, Q148H, N155H and R263K comparable to the WT structure. Except for accessory mutant structure E157Q, only one MG contact was made with DTG, while DTG had no MG ion contacts and no DDE motif residue contacts for structure D232N. Conclusions: Our analysis indicated that all RAM’s that resulted in a change in the number of interactions with encompassing residues does not affect DTG binding, while accessory mutations E157Q and D232N could affect DTG binding leading to possible DTG resistance. However, further experimental validation is required to validate the in silico findings of our study.
- ItemPrioritization of candidate genes for a South African family with Parkinson’s disease using in-silico tools(Public Library of Science, 2021) Sebate, Boiketlo; Cuttler, Katelyn; Cloete, Ruben; Britz, Marcell; Christoffels, Alan; Williams, Monique; Carr, Jonathan; Bardien, SorayaParkinson’s disease (PD) is a neurodegenerative disorder exhibiting Mendelian inheritance in some families. Next-generation sequencing approaches, including whole exome sequencing (WES), have revolutionized the field of Mendelian disorders and have identified a number of PD genes. We recruited a South African family with autosomal dominant PD and used WES to identify a possible pathogenic mutation. After filtration and prioritization, we found five potential causative variants in CFAP65, RTF1, NRXN2, TEP1 and CCNF. The variant in NRXN2 was selected for further analysis based on consistent prediction of deleteriousness across computational tools, not being present in unaffected family members, ethnic-matched controls or public databases, and its expression in the substantia nigra. A protein model for NRNX2 was created which provided a three-dimensional (3D) structure that satisfied qualitative mean and global model quality assessment scores. Trajectory analysis showed destabilizing effects of the variant on protein structure, indicated by high flexibility of the LNS-6 domain adopting an extended conformation. We also found that the known substrate N-acetyl-D-glucosamine (NAG) contributed to restoration of the structural stability of mutant NRXN2. If NRXN2 is indeed found to be the causal gene, this could reveal a new mechanism for the pathobiology of PD.
- ItemStructural comparison of diverse HIV-1 subtypes using molecular modelling and docking analyses of integrase inhibitors(MDPI, 2020-08-26) Isaacs, Darren; Mikasi, Sello Given; Obasa, Adetayo Emmanuel; Ikomey, George Mondinde; Shityakov, Sergey; Cloete, Ruben; Jacobs, Graeme BrendonENGLISH ABSTRACT: The process of viral integration into the host genome is an essential step of the HIV-1 life cycle. The viral integrase (IN) enzyme catalyzes integration. IN is an ideal therapeutic enzyme targeted by several drugs; raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG), and bictegravir (BIC) having been approved by the USA Food and Drug Administration (FDA). Due to high HIV-1 diversity, it is not well understood how specific naturally occurring polymorphisms (NOPs) in IN may affect the structure/function and binding affinity of integrase strand transfer inhibitors (INSTIs). We applied computational methods of molecular modelling and docking to analyze the effect of NOPs on the full-length IN structure and INSTI binding. We identified 13 NOPs within the Cameroonian-derived CRF02_AG IN sequences and further identified 17 NOPs within HIV-1C South African sequences. The NOPs in the IN structures did not show any differences in INSTI binding affinity. However, linear regression analysis revealed a positive correlation between the Ki and EC50 values for DTG and BIC as strong inhibitors of HIV-1 IN subtypes. All INSTIs are clinically effective against diverse HIV-1 strains from INSTI treatment-naïve populations. This study supports the use of second-generation INSTIs such as DTG and BIC as part of first-line combination antiretroviral therapy (cART) regimens, due to a stronger genetic barrier to the emergence of drug resistance.
- ItemStructure based identification of novel inhibitors against ATP synthase of Mycobacterium tuberculosis : a combined in silico and in vitro study(Elsevier, 2019) Shahbaaz, Mohd; Cloete, Ruben; Grobbelaar, Melanie; Sampson, Samantha; Christoffels, AlanENGLISH ABSTRACT: The shortcomings of conventional tuberculosis treatments resulting from the development of drug resistance in Mycobacterium tuberculosis drive a need for the formulation of novel therapeutic agents. The diarylquinoline class of drugs such as bedaquiline was recently approved for the treatment of multidrug-resistant strains of tuberculosis, primarily targeting c and ε subunits of the ATP synthases. Yet resistance to bedaquiline has already been reported. Therefore, Rv1311 was used as the target for the identification of possible inhibitors against the M. tuberculosis. The structure of Rv1311 was predicted and common feature pharmacophore models were generated which facilitated the identification of potential inhibitors in the ZINC database. The activities of the selected molecules were compared with known inhibitors of the ATP synthase using quantitative structure–activity relationship. The ZINC classified inhibitors showed comparable predicted activities with that of known inhibitors. Furthermore, the inhibitory behavior of the studied drug molecules was experimentally determined using in vitro techniques and showed the minimum inhibitory concentration as low as 25 μM. The resulted outcomes provide a deeper insight into the structural basis of Rv1311 inhibitions and can facilitate the process of drug design against tuberculosis.