Browsing by Author "Bradshaw, S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemNumerical and physical modelling of tundish slag entrainment in the steelmaking process(The Southern African Institute of Mining and Metallurgy, 2017-05) Mabentsela, A.; Akdogan, G.; Bradshaw, S.ENGLISH ABSTRACT: Physical and numerical modelling methods were followed to identify mechanism(s) for tundish slag entrainment in a bare tundish and one with a flow control device (FCD). The physical and numerical models made use of water and paraffin to model steel and slag respectively. Observations from the physical model showed that the steel-slag interface remains immobile in both cases. Entrained paraffin formed droplets approximately 1 mm in diameter. Results from both models (numerical and physical) showed that in both cases (bare and FCD case), areas of high entrained slag concentration exist near the inlet region. The entrained slag concentration decreases towards the tundish endwalls. Flow patterns and velocities tangential to the steel-slag interface from the numerical model showed that slag entrainment in both the bare tundish and tundish with a FCD possibly takes place via two mechanisms. First, the slag moves across the steel-slag interface via mass transfer; secondly small velocities tangential to the interface at depths greater than 10 mm below the interface carry the already ‘entrained’ slag into the bulk steel phase. These tangential flow patterns are dominant in the inlet region, hence the high concentration of entrained slag in this region.
- ItemThe recovery of platinum group metals from low-grade concentrates to an iron alloy using silicon carbide as reductant(The Southern African Institute of Mining and Metallurgy, 2015) Malan, W.; Akdogan, G.; Bradshaw, S.; Bezuidenhout, G. A.The purpose of the study was to investigate the feasibility of SiC reduction of low-grade concentrates from Lonmin’s Rowland and Easterns operations with respect to metal fall and PGM recovery. These concentrates are rich in SiO2 and MgO with low concentrations of chalcopyrite and Cr2O3. Pd is the most abundant of the PGMs. SiC reduction of samples was conducted at 1600℃ with 2.5–3.5 kg SiC per 100 kg concentrate. PGM recoveries for Easterns concentrate were better than for Rowland. More than 85% of the Ir and Pd and almost 60% of the Pt were recovered with 3.5 kg SiC per 100 kg concentrate. SEM of slag samples showed little entrainment of metallic prills compared to Rowland samples. This was attributed to the relatively higher melt viscosities of the Rowland concentrate. In order to decrease slag viscosity and to enhance PGM recovery, the FeO content of the Easterns concentrate was increased with the addition of 10 kg converter slag per 100 kg concentrate. Ir and Pd recoveries were increased to about 95%, while Pt recovery was around 70%. On the basis of these results an optimum feed ratio between Easterns and Rowland concentrates and converter slag is proposed. Carbothermic reduction of the optimum charge was also compared to SiC reduction. Carbothermic reduction yielded a marginally higher metal fall; however, the calculated gas emissions and energy requirements were higher than for SiC reduction.
- ItemSonic injection into a PGM Peirce-Smith converter : CFD modelling and industrial trials(The Southern African Institute of Mining and Metallurgy, 2015) Chibwe, D. K.; Akdogan, G.; Bezuidenhout, G. A.; Kapusta, J. P. T.; Bradshaw, S.; Eksteen, J. J.ENGLISH ABSTRACT: Peirce-Smith converters (PSCs) are extensively used in the copper, nickel, and platinum group metals industries. The typical converting operation involves lateral purging of air into molten matte through a bank of tuyeres. This blowing operation occurs at low pressure from the blowers, resulting in a bubbling regime that is considered inefficient from both a process and an energy utilization perspective. Inherent drawbacks also include recurrent tuyere blockage, tuyere punching, and low oxygen efficiency. Western Platinum embarked on a full-scale industrial evaluation of generating a jetting regime by using sonic injection. Prior to industrialscale tests, a numerical assessment to ascertain the feasibility of implementing sonic injection into a PSC was conducted. The work included flow characterization at high-pressure injection achieving sonic velocity at the tuyere exit. The 2D and 3D simulations of the three-phase system were carried out using the volume of fluid method together with the RKE turbulence model to account for the multiphase and turbulent nature of the flow. This paper discusses the key findings in understanding plume extension, velocity distribution, shear wall stress analysis, and phase distribution characteristics in the system. Plant trials are also discussed with reference to the commercial aspects of a full-scale implementation of sonic injection in the smelter.