Browsing by Author "Bertolino, Sandro"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAppropriate uses of EICAT protocol, data and classifications(Pensoft, 2020-10-15) Kumschick, Sabrina; Bacher, Sven; Bertolino, Sandro; Blackburn, Tim M.; Evans, Thomas; Roy, Helen E.; Smith, KevinENGLISH ABSTRACT: The Environmental Impact Classification for Alien Taxa (EICAT) can be used to classify alien taxa according to the magnitude and type of their environmental impacts. The EICAT protocol, classifications of alien taxa using the protocol (EICAT classification) and the data underpinning classifications (EICAT data) are increasingly used by scientists and practitioners such as governments, NGOs and civil society for a variety of purposes. However, the properties of the EICAT protocol and the data it generates are not suitable for certain uses. Therefore, we present guidelines designed to clarify and facilitate the appropriate use of EICAT to tackle a broad range of conservation issues related to biological invasions, as well as to guide research and communication more generally. Here we address common misconceptions and give a brief overview of some key issues that all EICAT users need to be aware of to take maximal advantage of this resource. Furthermore, we give examples of the wide variety of ways in which the EICAT protocol, classifications and data can be and have been utilised and outline common errors and pitfalls to avoid.
- ItemHolistic understanding of contemporary ecosystems requires integration of data on domesticated, captive and cultivated organisms(Pensoft, 2021-06-15) Groom, Quentin; Adriaens, Tim; Bertolino, Sandro; Phelps, Kendra; Poelen, Jorrit H.; Reeder, DeeAnn Marie; Richardson, David M.; Simmons, Nancy B.; Upham, NathanDomestic and captive animals and cultivated plants should be recognised as integral components in contemporary ecosystems. They interact with wild organisms through such mechanisms as hybridization, predation, herbivory, competition and disease transmission and, in many cases, define ecosystem properties. Nevertheless, it is widespread practice for data on domestic, captive and cultivated organisms to be excluded from biodiversity repositories, such as natural history collections. Furthermore, there is a lack of integration of data collected about biodiversity in disciplines, such as agriculture, veterinary science, epidemiology and invasion science. Discipline-specific data are often intentionally excluded from integrative databases in order to maintain the “purity” of data on natural processes. Rather than being beneficial, we argue that this practise of data exclusivity greatly limits the utility of discipline-specific data for applications ranging from agricultural pest management to invasion biology, infectious disease prevention and community ecology. This problem can be resolved by data providers using standards to indicate whether the observed organism is of wild or domestic origin and by integrating their data with other biodiversity data (e.g. in the Global Biodiversity Information Facility). Doing so will enable efforts to integrate the full panorama of biodiversity knowledge across related disciplines to tackle pressing societal questions.
- ItemImproving the Environmental Impact Classification for Alien Taxa (EICAT): a summary of revisions to the framework and guidelines(Pensoft, 2020-10-15) Volery, Lara; Blackburn, Tim M.; Bertolino, Sandro; Evans, Thomas; Genovesi, Piero; Kumschick, Sabrina; Roy, Helen E.; Smith, Kevin G.; Bacher, SvenENGLISH ABSTRACT: The Environmental Impact Classification for Alien Taxa (EICAT) classifies the impacts caused by alien species in their introduced range in standardised terms across taxa and recipient environments. Impacts are classified into one of five levels of severity, from Minimal Concern to Massive, via one of 12 impact mechanisms. Here, we explain revisions based on an IUCN-wide consultation process to the previously-published EICAT framework and guidelines, to clarify why these changes were necessary. These changes mainly concern: the distinction between the two highest levels of impact severity (Major and Massive impacts), the scenarios of the five levels of severity for the hybridisation and disease transmission mechanisms, the broadening of existing impact mechanisms to capture overlooked mechanisms, the Current (Maximum) Impact, and the way uncertainty of individual impact assessments is evaluated. Our aim in explaining this revision process is to ensure consistency of EICAT assessments, by improving the understanding of the framework.