Browsing by Author "Bahr, Nathan C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemThe current global situation for tuberculous meningitis : epidemiology, diagnostics, treatment and outcomes [version 1; peer review: 2 approved](F1000Research, 2019) Seddon, James A.; Tugume, Lillian; Solomons, Regan; Prasad, Kameshwar; Bahr, Nathan C.ENGLISH ABSTRACT: Tuberculous meningitis (TBM) results from dissemination of M. tuberculosis to the cerebrospinal fluid (CSF) and meninges. Ischaemia, hydrocephalus and raised intracranial pressure frequently result, leading to extensive brain injury and neurodisability. The global burden of TBM is unclear and it is likely that many cases are undiagnosed, with many treated cases unreported. Untreated, TBM is uniformly fatal, and even if treated, mortality and morbidity are high. Young age and human immunodeficiency virus (HIV) infection are potent risk factors for TBM, while Bacillus Calmette–Guérin (BCG) vaccination is protective, particularly in young children. Diagnosis of TBM usually relies on characteristic clinical symptoms and signs, together with consistent neuroimaging and CSF parameters. The ability to confirm the TBM diagnosis via CSF isolation of M. tuberculosis depends on the type of diagnostic tests available. In most cases, the diagnosis remains unconfirmed. GeneXpert MTB/RIF and the next generation Xpert Ultra offer improved sensitivity and rapid turnaround times, and while roll-out has scaled up, availability remains limited. Many locations rely only on acid fast bacilli smear, which is insensitive. Treatment regimens for TBM are based on evidence for pulmonary tuberculosis treatment, with little consideration to CSF penetration or mode of drug action required. The World Health Organization recommends a 12-month treatment course, although data on which to base this duration is lacking. New treatment regimens and drug dosages are under evaluation, with much higher dosages of rifampicin and the inclusion of fluoroquinolones and linezolid identified as promising innovations. The inclusion of corticosteroids at the start of treatment has been demonstrated to reduce mortality in HIV-negative individuals but whether they are universally beneficial is unclear. Other host-directed therapies show promise but evidence for widespread use is lacking. Finally, the management of TBM within health systems is sub-optimal, with drop-offs at every stage in the care cascade.
- ItemHost directed therapies for tuberculous meningitis(Wellcome Trust, 2020-07-01) Davis, Angharad G.; Donovan, Joseph; Bremer, Marise; Van Toorn, Ronald; Schoeman, Johan; Dadabhoy, Ariba; Lai, Rachel P. J.; Cresswell, Fiona V.; Boulware, David R.; Wilkinson, Robert J.; Thuong, Nguyen Thuy Thuong; Thwaites, Guy E.; Bahr, Nathan C.; Tuberculous Meningitis International Research ConsortiumENGLISH ABSTRACT: A dysregulated host immune response significantly contributes to morbidity and mortality in tuberculous meningitis (TBM). Effective host directed therapies (HDTs) are critical to improve survival and clinical outcomes. Currently only one HDT, dexamethasone, is proven to improve mortality. However, there is no evidence dexamethasone reduces morbidity, how it reduces mortality is uncertain, and it has no proven benefit in HIV co-infected individuals. Further research on these aspects of its use, as well as alternative HDTs such as aspirin, thalidomide and other immunomodulatory drugs is needed. Based on new knowledge from pathogenesis studies, repurposed therapeutics which act upon small molecule drug targets may also have a role in TBM. Here we review existing literature investigating HDTs in TBM, and propose new rationale for the use of novel and repurposed drugs. We also discuss host variable responses and evidence to support a personalised approach to HDTs in TBM.
- ItemRecent Developments in Tuberculous Meningitis Pathogenesis and Diagnostics [version 3; peer review: 3 approved](F1000Research, 2019) Cresswell, Fiona V.; Davis, Angharad G.; Sharma, Kusum; Roy, Robindra Basu; Ganiem, Ahmad Rizal; Kagimu, Enock; Solomons, Regan; Wilkinson, Robert J.; Bahr, Nathan C.; Thuong, Nguyen Thuy Thuong; Tuberculous Meningitis International Research ConsortiumENGLISH ABSTRACT: The pathogenesis of Tuberculous meningitis (TBM) is poorly understood, but contemporary molecular biology technologies have allowed for recent improvements in our understanding of TBM. For instance, neutrophils appear to play a significant role in the immunopathogenesis of TBM, and either a paucity or an excess of inflammation can be detrimental in TBM. Further, severity of HIV-associated immunosuppression is an important determinant of inflammatory response; patients with the advanced immunosuppression (CD4+ T-cell count of <150 cells/μL) having higher CSF neutrophils, greater CSF cytokine concentrations and higher mortality than those with CD4+ T-cell counts > 150 cells/μL. Host genetics may also influence outcomes with LT4AH genotype predicting inflammatory phenotype, steroid responsiveness and survival in Vietnamese adults with TBM. Whist in Indonesia, CSF tryptophan level was a predictor of survival, suggesting tryptophan metabolism may be important in TBM pathogenesis. These varying responses mean that we must consider whether a “one-size-fits-all” approach to anti-bacillary or immunomodulatory treatment in TBM is truly the best way forward. Of course, to allow for proper treatment, early and rapid diagnosis of TBM must occur. Diagnosis has always been a challenge but the field of TB diagnosis is evolving, with sensitivities of at least 70% now possible in less than two hours with GeneXpert MTB/Rif Ultra. In addition, advanced molecular techniques such as CRISPR-MTB and metagenomic next generation sequencing may hold promise for TBM diagnosis. Host-based biomarkers and signatures are being further evaluated in childhood and adult TBM as adjunctive biomarkers as even with improved molecular assays, cases are still missed. A better grasp of host and pathogen behaviour may lead to improved diagnostics, targeted immunotherapy, and possibly biomarker-based, patient-specific treatment regimens.